温度切换对硫自养反硝化除氮及出水S/N比的影响

IF 3.7 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Xiaoyan Dang , Xu Li , Chaoyue Zhao , Yanping Zhang , Xiaolong Gao , Shumin He , Jie Han , Yaonan Zhu , Youzhao Wang , Tong Zhu
{"title":"温度切换对硫自养反硝化除氮及出水S/N比的影响","authors":"Xiaoyan Dang ,&nbsp;Xu Li ,&nbsp;Chaoyue Zhao ,&nbsp;Yanping Zhang ,&nbsp;Xiaolong Gao ,&nbsp;Shumin He ,&nbsp;Jie Han ,&nbsp;Yaonan Zhu ,&nbsp;Youzhao Wang ,&nbsp;Tong Zhu","doi":"10.1016/j.bej.2025.109703","DOIUrl":null,"url":null,"abstract":"<div><div>Seasonal temperature alternation severely affects the biological denitrification of high nitrogen concentrations in industrial wastewater. This study used sulfur-based filled particles for the sulfur autotrophic denitrification technique, and evaluated the performance of the sulfur autotrophic denitrification (SAD) reactor for the removal of high concentrations of NO<sub>3</sub><sup>-</sup>-N by simulating seasonal shifts and switching between 10℃ and 30℃ for 275 days. By precisely adjusting influent nitrate-nitrogen and Hydraulic Retention Times <strong>(</strong>HRTs<strong>)</strong>, studies revealed enhanced nitrogen removal loading (NRL) at 30℃. Growth of sulfur autotrophs and electron transfer were inhibited at 10℃, and metabolites and biological residues supplied organic matter to heterotrophic denitrifying bacteria, resulting in lower sulfate production and significantly lower S/N ratios than at 30℃. Response surface optimization indicated optimal conditions: 83 % denitrification rate at 27.94℃, 18.7 h HRT, and 135.79 mg/L influent concentration, aligning closely with experimental findings. <em>Thiobacillus</em> and <em>Thermomonas</em> were more abundant at 30℃. And higher correlation of microorganisms between the two samples at high and low temperatures under high-concentration influent conditions. Additionally, the application of the SAD system is economically feasible because its raw materials are low-cost sulfur-based materials. This study aims to demonstrate the advantages of temperature in sulfur autotrophic denitrification, enhance the understanding of its mechanism, and provide a basis for wastewater treatment applications.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"219 ","pages":"Article 109703"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of temperature switching on nitrogen removal and effluent S/N ratio via sulfur autotrophic denitrification\",\"authors\":\"Xiaoyan Dang ,&nbsp;Xu Li ,&nbsp;Chaoyue Zhao ,&nbsp;Yanping Zhang ,&nbsp;Xiaolong Gao ,&nbsp;Shumin He ,&nbsp;Jie Han ,&nbsp;Yaonan Zhu ,&nbsp;Youzhao Wang ,&nbsp;Tong Zhu\",\"doi\":\"10.1016/j.bej.2025.109703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Seasonal temperature alternation severely affects the biological denitrification of high nitrogen concentrations in industrial wastewater. This study used sulfur-based filled particles for the sulfur autotrophic denitrification technique, and evaluated the performance of the sulfur autotrophic denitrification (SAD) reactor for the removal of high concentrations of NO<sub>3</sub><sup>-</sup>-N by simulating seasonal shifts and switching between 10℃ and 30℃ for 275 days. By precisely adjusting influent nitrate-nitrogen and Hydraulic Retention Times <strong>(</strong>HRTs<strong>)</strong>, studies revealed enhanced nitrogen removal loading (NRL) at 30℃. Growth of sulfur autotrophs and electron transfer were inhibited at 10℃, and metabolites and biological residues supplied organic matter to heterotrophic denitrifying bacteria, resulting in lower sulfate production and significantly lower S/N ratios than at 30℃. Response surface optimization indicated optimal conditions: 83 % denitrification rate at 27.94℃, 18.7 h HRT, and 135.79 mg/L influent concentration, aligning closely with experimental findings. <em>Thiobacillus</em> and <em>Thermomonas</em> were more abundant at 30℃. And higher correlation of microorganisms between the two samples at high and low temperatures under high-concentration influent conditions. Additionally, the application of the SAD system is economically feasible because its raw materials are low-cost sulfur-based materials. This study aims to demonstrate the advantages of temperature in sulfur autotrophic denitrification, enhance the understanding of its mechanism, and provide a basis for wastewater treatment applications.</div></div>\",\"PeriodicalId\":8766,\"journal\":{\"name\":\"Biochemical Engineering Journal\",\"volume\":\"219 \",\"pages\":\"Article 109703\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369703X25000774\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369703X25000774","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

季节温度变化严重影响工业废水中高浓度氮的生物反硝化。本研究采用硫基填充颗粒进行硫自养反硝化技术,通过模拟季节变化,在10℃和30℃之间切换275天,评估了硫自养反硝化反应器(SAD)去除高浓度NO3——N的性能。通过精确调节进水硝酸盐氮和水力滞留时间(HRTs),研究发现30℃条件下氮去除负荷(NRL)增强。10℃抑制了硫自养菌的生长和电子转移,代谢物和生物残留物为异养反硝化菌提供有机物,导致硫酸盐产量降低,S/N比显著低于30℃。响应面优化结果表明,在27.94℃、18.7 h HRT、135.79 mg/L进水条件下,脱氮率为83% %,与实验结果吻合较好。30℃时硫杆菌和热单胞菌数量较多。在高浓度进水条件下,两种样品在高低温下微生物相关性较高。此外,SAD系统的应用在经济上是可行的,因为它的原材料是低成本的硫基材料。本研究旨在证明温度在硫自养反硝化中的优势,增强对其机理的认识,为废水处理应用提供依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of temperature switching on nitrogen removal and effluent S/N ratio via sulfur autotrophic denitrification
Seasonal temperature alternation severely affects the biological denitrification of high nitrogen concentrations in industrial wastewater. This study used sulfur-based filled particles for the sulfur autotrophic denitrification technique, and evaluated the performance of the sulfur autotrophic denitrification (SAD) reactor for the removal of high concentrations of NO3--N by simulating seasonal shifts and switching between 10℃ and 30℃ for 275 days. By precisely adjusting influent nitrate-nitrogen and Hydraulic Retention Times (HRTs), studies revealed enhanced nitrogen removal loading (NRL) at 30℃. Growth of sulfur autotrophs and electron transfer were inhibited at 10℃, and metabolites and biological residues supplied organic matter to heterotrophic denitrifying bacteria, resulting in lower sulfate production and significantly lower S/N ratios than at 30℃. Response surface optimization indicated optimal conditions: 83 % denitrification rate at 27.94℃, 18.7 h HRT, and 135.79 mg/L influent concentration, aligning closely with experimental findings. Thiobacillus and Thermomonas were more abundant at 30℃. And higher correlation of microorganisms between the two samples at high and low temperatures under high-concentration influent conditions. Additionally, the application of the SAD system is economically feasible because its raw materials are low-cost sulfur-based materials. This study aims to demonstrate the advantages of temperature in sulfur autotrophic denitrification, enhance the understanding of its mechanism, and provide a basis for wastewater treatment applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemical Engineering Journal
Biochemical Engineering Journal 工程技术-工程:化工
CiteScore
7.10
自引率
5.10%
发文量
380
审稿时长
34 days
期刊介绍: The Biochemical Engineering Journal aims to promote progress in the crucial chemical engineering aspects of the development of biological processes associated with everything from raw materials preparation to product recovery relevant to industries as diverse as medical/healthcare, industrial biotechnology, and environmental biotechnology. The Journal welcomes full length original research papers, short communications, and review papers* in the following research fields: Biocatalysis (enzyme or microbial) and biotransformations, including immobilized biocatalyst preparation and kinetics Biosensors and Biodevices including biofabrication and novel fuel cell development Bioseparations including scale-up and protein refolding/renaturation Environmental Bioengineering including bioconversion, bioremediation, and microbial fuel cells Bioreactor Systems including characterization, optimization and scale-up Bioresources and Biorefinery Engineering including biomass conversion, biofuels, bioenergy, and optimization Industrial Biotechnology including specialty chemicals, platform chemicals and neutraceuticals Biomaterials and Tissue Engineering including bioartificial organs, cell encapsulation, and controlled release Cell Culture Engineering (plant, animal or insect cells) including viral vectors, monoclonal antibodies, recombinant proteins, vaccines, and secondary metabolites Cell Therapies and Stem Cells including pluripotent, mesenchymal and hematopoietic stem cells; immunotherapies; tissue-specific differentiation; and cryopreservation Metabolic Engineering, Systems and Synthetic Biology including OMICS, bioinformatics, in silico biology, and metabolic flux analysis Protein Engineering including enzyme engineering and directed evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信