分级孔隙率Fe-ZSM-5催化剂对邻二醇氧化裂解的促进作用

Philipp Treu , Dimitra Iltsiou , Rabia Elbuga-Ilica , Carina Maliakkal , Søren Kegnæs , Erisa Saraçi
{"title":"分级孔隙率Fe-ZSM-5催化剂对邻二醇氧化裂解的促进作用","authors":"Philipp Treu ,&nbsp;Dimitra Iltsiou ,&nbsp;Rabia Elbuga-Ilica ,&nbsp;Carina Maliakkal ,&nbsp;Søren Kegnæs ,&nbsp;Erisa Saraçi","doi":"10.1016/j.scenv.2025.100232","DOIUrl":null,"url":null,"abstract":"<div><div>The oxidative cleavage of biomass-derived vicinal diols holds significant potential for producing valuable renewable carboxylic acids. Fe-ZSM-5 zeolite is a highly effective catalyst for this reaction using mild reaction conditions; however, it suffers from diffusion limitations, particularly with larger substrates. To overcome these challenges, we synthesized hierarchical ZSM-5 zeolite that integrate mesopores within the conventional microporous framework, thereby mitigating diffusion constraints. These hierarchical materials were developed using carbon templating and desilication techniques. Carbon templating led to the creation of well-defined mesopores, while desilication facilitated the formation of hollow crystals. The mesopore-containing hierarchical zeolites led to increased ion-exchange capacity, due to enhanced accessibility of exchange positions for the Fe<sup>3 +</sup> cations, with the desilicated zeolite exceeding the Fe-loading by 3.5 times that of the microporous parent ZSM-5 material, as observed by UV–vis spectroscopy, EXAFS analysis and elemental analysis by ICP-OES. Catalytic tests revealed that hierarchical Fe-ZSM-5 catalysts exhibit superior performance compared to their purely microporous counterparts. Specifically, desilication improved catalytic activity for smaller substrates, while carbon templating proved more effective for larger vicinal diols. Furthermore, the carbon templated zeolite displayed enhanced activity per Fe-site, highlighting the benefits of hierarchical porosity in optimizing catalytic performance.</div></div>","PeriodicalId":101196,"journal":{"name":"Sustainable Chemistry for the Environment","volume":"10 ","pages":"Article 100232"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the oxidative cleavage of vicinal diols on Fe-ZSM-5 catalysts with hierarchical porosity\",\"authors\":\"Philipp Treu ,&nbsp;Dimitra Iltsiou ,&nbsp;Rabia Elbuga-Ilica ,&nbsp;Carina Maliakkal ,&nbsp;Søren Kegnæs ,&nbsp;Erisa Saraçi\",\"doi\":\"10.1016/j.scenv.2025.100232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The oxidative cleavage of biomass-derived vicinal diols holds significant potential for producing valuable renewable carboxylic acids. Fe-ZSM-5 zeolite is a highly effective catalyst for this reaction using mild reaction conditions; however, it suffers from diffusion limitations, particularly with larger substrates. To overcome these challenges, we synthesized hierarchical ZSM-5 zeolite that integrate mesopores within the conventional microporous framework, thereby mitigating diffusion constraints. These hierarchical materials were developed using carbon templating and desilication techniques. Carbon templating led to the creation of well-defined mesopores, while desilication facilitated the formation of hollow crystals. The mesopore-containing hierarchical zeolites led to increased ion-exchange capacity, due to enhanced accessibility of exchange positions for the Fe<sup>3 +</sup> cations, with the desilicated zeolite exceeding the Fe-loading by 3.5 times that of the microporous parent ZSM-5 material, as observed by UV–vis spectroscopy, EXAFS analysis and elemental analysis by ICP-OES. Catalytic tests revealed that hierarchical Fe-ZSM-5 catalysts exhibit superior performance compared to their purely microporous counterparts. Specifically, desilication improved catalytic activity for smaller substrates, while carbon templating proved more effective for larger vicinal diols. Furthermore, the carbon templated zeolite displayed enhanced activity per Fe-site, highlighting the benefits of hierarchical porosity in optimizing catalytic performance.</div></div>\",\"PeriodicalId\":101196,\"journal\":{\"name\":\"Sustainable Chemistry for the Environment\",\"volume\":\"10 \",\"pages\":\"Article 100232\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Chemistry for the Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949839225000276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry for the Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949839225000276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物质衍生的邻苯二醇的氧化裂解在生产有价值的可再生羧酸方面具有重要的潜力。Fe-ZSM-5沸石是该反应的高效催化剂,反应条件温和;然而,它受到扩散限制,特别是在较大的衬底上。为了克服这些挑战,我们合成了分层ZSM-5沸石,将介孔整合到传统的微孔框架中,从而减轻了扩散限制。这些分层材料是使用碳模板和脱硅技术开发的。碳模板导致了中孔的形成,而脱硅促进了中空晶体的形成。通过紫外可见光谱、EXAFS分析和ICP-OES元素分析发现,由于Fe3 +阳离子的交换位置可达性增强,含介孔的分级沸石的离子交换能力增加,脱硅沸石的铁负载是微孔母体ZSM-5材料的3.5倍。催化实验表明,分级Fe-ZSM-5催化剂的性能优于纯微孔催化剂。具体来说,脱硅提高了对较小底物的催化活性,而碳模板被证明对较大的邻二醇更有效。此外,碳模板沸石在每个fe位点上显示出增强的活性,突出了分层孔隙在优化催化性能方面的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing the oxidative cleavage of vicinal diols on Fe-ZSM-5 catalysts with hierarchical porosity
The oxidative cleavage of biomass-derived vicinal diols holds significant potential for producing valuable renewable carboxylic acids. Fe-ZSM-5 zeolite is a highly effective catalyst for this reaction using mild reaction conditions; however, it suffers from diffusion limitations, particularly with larger substrates. To overcome these challenges, we synthesized hierarchical ZSM-5 zeolite that integrate mesopores within the conventional microporous framework, thereby mitigating diffusion constraints. These hierarchical materials were developed using carbon templating and desilication techniques. Carbon templating led to the creation of well-defined mesopores, while desilication facilitated the formation of hollow crystals. The mesopore-containing hierarchical zeolites led to increased ion-exchange capacity, due to enhanced accessibility of exchange positions for the Fe3 + cations, with the desilicated zeolite exceeding the Fe-loading by 3.5 times that of the microporous parent ZSM-5 material, as observed by UV–vis spectroscopy, EXAFS analysis and elemental analysis by ICP-OES. Catalytic tests revealed that hierarchical Fe-ZSM-5 catalysts exhibit superior performance compared to their purely microporous counterparts. Specifically, desilication improved catalytic activity for smaller substrates, while carbon templating proved more effective for larger vicinal diols. Furthermore, the carbon templated zeolite displayed enhanced activity per Fe-site, highlighting the benefits of hierarchical porosity in optimizing catalytic performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信