船用缆索驱动并联磨削机器人模糊二阶积分终端自适应滑模控制

IF 5.5 2区 工程技术 Q1 ENGINEERING, CIVIL
Shilong Zhao , Shenghai Wang , Jian Li , Guangdong Han , Yunpeng He , Haiquan Chen , Weirong Luo , Yuqing Sun
{"title":"船用缆索驱动并联磨削机器人模糊二阶积分终端自适应滑模控制","authors":"Shilong Zhao ,&nbsp;Shenghai Wang ,&nbsp;Jian Li ,&nbsp;Guangdong Han ,&nbsp;Yunpeng He ,&nbsp;Haiquan Chen ,&nbsp;Weirong Luo ,&nbsp;Yuqing Sun","doi":"10.1016/j.oceaneng.2025.120784","DOIUrl":null,"url":null,"abstract":"<div><div>During shipbuilding and maintenance, manual grinding is not only inefficient and highly risky in high-altitude operations, but also poses a threat to workers' lives due to the inhalation of metal dust. Consequently, this paper proposes a marine cable-driven parallel grinding robot (CDPGR). Firstly, a dynamic model of the CDPGR, incorporating ship motion, is established using the Lagrange method. The cable tensions are applied in the ADAMS virtual prototype to obtain the friction force and torque. Secondly, the CDPGR is highly sensitive to counter forces from the grinding mechanism, ship motion, impact loads, and other factors. Due to the insufficient control accuracy of existing controllers, a fuzzy second-order integral terminal adaptive sliding mode control (F-SOITASMC) is proposed based on the dynamic model. The stability of the control system is demonstrated using the Lyapunov theory. Furthermore, the effectiveness of the F-SOITASMC is validated through simulations under complex working conditions and compared with existing control strategies. Finally, the superiority of the F-SOITASMC is further confirmed via scaled-down prototype experiments. This study provides novel insights and methodologies for applying cable-driven parallel robots in marine environments.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":"326 ","pages":"Article 120784"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuzzy second-order integral terminal adaptive sliding mode control for marine cable-driven parallel grinding robot\",\"authors\":\"Shilong Zhao ,&nbsp;Shenghai Wang ,&nbsp;Jian Li ,&nbsp;Guangdong Han ,&nbsp;Yunpeng He ,&nbsp;Haiquan Chen ,&nbsp;Weirong Luo ,&nbsp;Yuqing Sun\",\"doi\":\"10.1016/j.oceaneng.2025.120784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>During shipbuilding and maintenance, manual grinding is not only inefficient and highly risky in high-altitude operations, but also poses a threat to workers' lives due to the inhalation of metal dust. Consequently, this paper proposes a marine cable-driven parallel grinding robot (CDPGR). Firstly, a dynamic model of the CDPGR, incorporating ship motion, is established using the Lagrange method. The cable tensions are applied in the ADAMS virtual prototype to obtain the friction force and torque. Secondly, the CDPGR is highly sensitive to counter forces from the grinding mechanism, ship motion, impact loads, and other factors. Due to the insufficient control accuracy of existing controllers, a fuzzy second-order integral terminal adaptive sliding mode control (F-SOITASMC) is proposed based on the dynamic model. The stability of the control system is demonstrated using the Lyapunov theory. Furthermore, the effectiveness of the F-SOITASMC is validated through simulations under complex working conditions and compared with existing control strategies. Finally, the superiority of the F-SOITASMC is further confirmed via scaled-down prototype experiments. This study provides novel insights and methodologies for applying cable-driven parallel robots in marine environments.</div></div>\",\"PeriodicalId\":19403,\"journal\":{\"name\":\"Ocean Engineering\",\"volume\":\"326 \",\"pages\":\"Article 120784\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0029801825004986\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029801825004986","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

在造船和维修过程中,手工磨削不仅在高空作业中效率低下,而且风险很大,而且由于吸入金属粉尘,对工人的生命构成威胁。为此,本文提出了一种船用电缆驱动并联磨削机器人(CDPGR)。首先,利用拉格朗日方法建立了考虑船舶运动的CDPGR动力学模型;在ADAMS虚拟样机中应用索张力得到摩擦力和扭矩。其次,CDPGR对磨削机构、船舶运动、冲击载荷等因素的反作用力高度敏感。针对现有控制器控制精度不足的问题,提出了一种基于动态模型的模糊二阶积分终端自适应滑模控制方法(F-SOITASMC)。利用李亚普诺夫理论证明了控制系统的稳定性。此外,通过复杂工况下的仿真验证了F-SOITASMC的有效性,并与现有控制策略进行了比较。最后,F-SOITASMC的优越性通过按比例缩小的原型实验得到进一步证实。该研究为在海洋环境中应用缆索驱动的并联机器人提供了新的见解和方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy second-order integral terminal adaptive sliding mode control for marine cable-driven parallel grinding robot
During shipbuilding and maintenance, manual grinding is not only inefficient and highly risky in high-altitude operations, but also poses a threat to workers' lives due to the inhalation of metal dust. Consequently, this paper proposes a marine cable-driven parallel grinding robot (CDPGR). Firstly, a dynamic model of the CDPGR, incorporating ship motion, is established using the Lagrange method. The cable tensions are applied in the ADAMS virtual prototype to obtain the friction force and torque. Secondly, the CDPGR is highly sensitive to counter forces from the grinding mechanism, ship motion, impact loads, and other factors. Due to the insufficient control accuracy of existing controllers, a fuzzy second-order integral terminal adaptive sliding mode control (F-SOITASMC) is proposed based on the dynamic model. The stability of the control system is demonstrated using the Lyapunov theory. Furthermore, the effectiveness of the F-SOITASMC is validated through simulations under complex working conditions and compared with existing control strategies. Finally, the superiority of the F-SOITASMC is further confirmed via scaled-down prototype experiments. This study provides novel insights and methodologies for applying cable-driven parallel robots in marine environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ocean Engineering
Ocean Engineering 工程技术-工程:大洋
CiteScore
7.30
自引率
34.00%
发文量
2379
审稿时长
8.1 months
期刊介绍: Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信