基于地下水信息的创新干旱分析

IF 3 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY
Veysi Kartal
{"title":"基于地下水信息的创新干旱分析","authors":"Veysi Kartal","doi":"10.1016/j.pce.2025.103901","DOIUrl":null,"url":null,"abstract":"<div><div>Drought hazard has complicated features related to climatic and spatio-temporal characteristics, making it challenging to accurately identify and track. Contemporary approaches to drought monitoring generally use standardized drought indices due to their practical utility. Despite the availability of a various array of drought indices, their application introduces complexities in data mining and decision-making processes, potentially resulting in confused outcomes. However, this research developed a new hybrid drought index Multivariate Cluster Ensemble Drought Evaluation Index (MCEDEI) based on machine learning technique cluster analysis using groundwater data of the KB region of Türkiye to assess the groundwater drought. For the development of MCEDEI, this study used 540-time series observations (range: 1978–2022) of groundwater data from five stations to evaluate drought characteristics. Furthermore, this study used steady-state probability to determine the trend and long-term probabilities of the drought index in the KB region of Türkiye. The results show that the NN (near normal) class was found to be dominant with a probability of 70.41% on a 1-month time scale, while NN was found to be dominant with a high probability of 65.94% on a 3-month time scale. The probability of the NN class was found to be equally high when the time scale was extended to 6, 9 and even 48 months. MD (moderate drought) remains important, and SD (severe drought) increases compared to SW (severe wet) classes. Findings shpw that there are significant changes in groundwater behaviour at different time scales. Short-term stability is characterized by the dominance of the NN class, while long-term scales show a trend towards extreme dry and wet conditions with a decrease in neutrality. As a result, Türkiye may face drought challenges in the future based on the findings.</div></div>","PeriodicalId":54616,"journal":{"name":"Physics and Chemistry of the Earth","volume":"139 ","pages":"Article 103901"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative drought analysis via groundwater information\",\"authors\":\"Veysi Kartal\",\"doi\":\"10.1016/j.pce.2025.103901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Drought hazard has complicated features related to climatic and spatio-temporal characteristics, making it challenging to accurately identify and track. Contemporary approaches to drought monitoring generally use standardized drought indices due to their practical utility. Despite the availability of a various array of drought indices, their application introduces complexities in data mining and decision-making processes, potentially resulting in confused outcomes. However, this research developed a new hybrid drought index Multivariate Cluster Ensemble Drought Evaluation Index (MCEDEI) based on machine learning technique cluster analysis using groundwater data of the KB region of Türkiye to assess the groundwater drought. For the development of MCEDEI, this study used 540-time series observations (range: 1978–2022) of groundwater data from five stations to evaluate drought characteristics. Furthermore, this study used steady-state probability to determine the trend and long-term probabilities of the drought index in the KB region of Türkiye. The results show that the NN (near normal) class was found to be dominant with a probability of 70.41% on a 1-month time scale, while NN was found to be dominant with a high probability of 65.94% on a 3-month time scale. The probability of the NN class was found to be equally high when the time scale was extended to 6, 9 and even 48 months. MD (moderate drought) remains important, and SD (severe drought) increases compared to SW (severe wet) classes. Findings shpw that there are significant changes in groundwater behaviour at different time scales. Short-term stability is characterized by the dominance of the NN class, while long-term scales show a trend towards extreme dry and wet conditions with a decrease in neutrality. As a result, Türkiye may face drought challenges in the future based on the findings.</div></div>\",\"PeriodicalId\":54616,\"journal\":{\"name\":\"Physics and Chemistry of the Earth\",\"volume\":\"139 \",\"pages\":\"Article 103901\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Chemistry of the Earth\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1474706525000518\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of the Earth","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474706525000518","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

干旱灾害具有复杂的气候和时空特征,难以准确识别和跟踪。由于其实用性,现代干旱监测方法通常使用标准化干旱指数。尽管有各种各样的干旱指数,但它们的应用给数据挖掘和决策过程带来了复杂性,可能导致混乱的结果。然而,本研究基于机器学习聚类分析技术,利用 rkiye KB地区的地下水数据,开发了一种新的混合干旱指数多元聚类集合干旱评价指数(MCEDEI)来评估地下水干旱。为了开发MCEDEI,本研究使用了五个站点的540个时间序列观测数据(范围:1978-2022)来评估干旱特征。此外,本研究还利用稳态概率法确定了 rkiye KB地区干旱指数的趋势和长期概率。结果表明,在1个月的时间尺度上,神经网络(接近正常)类占主导地位的概率为70.41%,而在3个月的时间尺度上,神经网络占主导地位的概率为65.94%。当时间尺度扩展到6个月、9个月甚至48个月时,发现NN类的概率同样高。MD(中度干旱)仍然很重要,SD(严重干旱)与SW(严重潮湿)相比有所增加。研究结果表明,在不同的时间尺度上,地下水的行为有显著的变化。短期稳定性的特点是神经网络类的优势,而长期尺度显示出极端干湿条件的趋势,中立性降低。因此,基于这一发现,t rkiye未来可能面临干旱挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Innovative drought analysis via groundwater information
Drought hazard has complicated features related to climatic and spatio-temporal characteristics, making it challenging to accurately identify and track. Contemporary approaches to drought monitoring generally use standardized drought indices due to their practical utility. Despite the availability of a various array of drought indices, their application introduces complexities in data mining and decision-making processes, potentially resulting in confused outcomes. However, this research developed a new hybrid drought index Multivariate Cluster Ensemble Drought Evaluation Index (MCEDEI) based on machine learning technique cluster analysis using groundwater data of the KB region of Türkiye to assess the groundwater drought. For the development of MCEDEI, this study used 540-time series observations (range: 1978–2022) of groundwater data from five stations to evaluate drought characteristics. Furthermore, this study used steady-state probability to determine the trend and long-term probabilities of the drought index in the KB region of Türkiye. The results show that the NN (near normal) class was found to be dominant with a probability of 70.41% on a 1-month time scale, while NN was found to be dominant with a high probability of 65.94% on a 3-month time scale. The probability of the NN class was found to be equally high when the time scale was extended to 6, 9 and even 48 months. MD (moderate drought) remains important, and SD (severe drought) increases compared to SW (severe wet) classes. Findings shpw that there are significant changes in groundwater behaviour at different time scales. Short-term stability is characterized by the dominance of the NN class, while long-term scales show a trend towards extreme dry and wet conditions with a decrease in neutrality. As a result, Türkiye may face drought challenges in the future based on the findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics and Chemistry of the Earth
Physics and Chemistry of the Earth 地学-地球科学综合
CiteScore
5.40
自引率
2.70%
发文量
176
审稿时长
31.6 weeks
期刊介绍: Physics and Chemistry of the Earth is an international interdisciplinary journal for the rapid publication of collections of refereed communications in separate thematic issues, either stemming from scientific meetings, or, especially compiled for the occasion. There is no restriction on the length of articles published in the journal. Physics and Chemistry of the Earth incorporates the separate Parts A, B and C which existed until the end of 2001. Please note: the Editors are unable to consider submissions that are not invited or linked to a thematic issue. Please do not submit unsolicited papers. The journal covers the following subject areas: -Solid Earth and Geodesy: (geology, geochemistry, tectonophysics, seismology, volcanology, palaeomagnetism and rock magnetism, electromagnetism and potential fields, marine and environmental geosciences as well as geodesy). -Hydrology, Oceans and Atmosphere: (hydrology and water resources research, engineering and management, oceanography and oceanic chemistry, shelf, sea, lake and river sciences, meteorology and atmospheric sciences incl. chemistry as well as climatology and glaciology). -Solar-Terrestrial and Planetary Science: (solar, heliospheric and solar-planetary sciences, geology, geophysics and atmospheric sciences of planets, satellites and small bodies as well as cosmochemistry and exobiology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信