通过分子动力学探索聚乙烯的玻璃化转变:从块状到孤立链

IF 5 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Etienne Beaumont , Alexandre Fleury , Ali Noroozi , Guillaume Vignaud , Marc Meunier , Armand Soldera
{"title":"通过分子动力学探索聚乙烯的玻璃化转变:从块状到孤立链","authors":"Etienne Beaumont ,&nbsp;Alexandre Fleury ,&nbsp;Ali Noroozi ,&nbsp;Guillaume Vignaud ,&nbsp;Marc Meunier ,&nbsp;Armand Soldera","doi":"10.1016/j.polymertesting.2025.108758","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we investigate the glass transition behavior of polyethylene (PE) chains in the bulk and isolated, using molecular dynamics (MD) simulations. Leveraging both simulated dilatometry, Arrhenius analysis, and a procedure based on the evolution of percentage of <em>trans</em> states, we identified three distinct regimes with different behaviors, proposing a glass transition domain delimited by glass transition temperatures (<span><math><mrow><msubsup><mi>T</mi><mi>g</mi><mi>l</mi></msubsup></mrow></math></span> and <span><math><mrow><msubsup><mi>T</mi><mi>g</mi><mi>u</mi></msubsup></mrow></math></span> delimiting the transition domain, and <span><math><mrow><msubsup><mi>T</mi><mi>g</mi><mi>d</mi></msubsup></mrow></math></span> extracted from dilatometry) for bulk polymers. The two latter methods were then used to characterize this domain for isolated chains, allowing us to compare with data stemming from the bulk polymer. Our findings reveal that <em>T</em><sub><em>g</em></sub>s of an isolated chain are generally lower than that of the bulk except for <span><math><mrow><msubsup><mi>T</mi><mi>g</mi><mi>l</mi></msubsup></mrow></math></span> which remains unchanged. This observation aligns with previous experimental and simulation studies. The study further investigates the dynamic and static flexibilities of the polymer, correlating the potential energy barriers associated with dihedral transitions to the observed <span><math><mrow><msubsup><mi>T</mi><mi>g</mi><mi>l</mi></msubsup></mrow></math></span> and <span><math><mrow><msubsup><mi>T</mi><mi>g</mi><mi>u</mi></msubsup></mrow></math></span> values. We propose that <span><math><mrow><msubsup><mi>T</mi><mi>g</mi><mi>l</mi></msubsup></mrow></math></span> is an intrinsic property of the polymer, as it depends on the potential energy barrier required to escape from the <em>trans</em> state. In contrast, <span><math><mrow><msubsup><mi>T</mi><mi>g</mi><mi>u</mi></msubsup></mrow></math></span> is influenced by more complex interactions and is lower for the isolated chain.</div></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"145 ","pages":"Article 108758"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring glass transition in polyethylene via molecular dynamics: From bulk to isolated chain\",\"authors\":\"Etienne Beaumont ,&nbsp;Alexandre Fleury ,&nbsp;Ali Noroozi ,&nbsp;Guillaume Vignaud ,&nbsp;Marc Meunier ,&nbsp;Armand Soldera\",\"doi\":\"10.1016/j.polymertesting.2025.108758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we investigate the glass transition behavior of polyethylene (PE) chains in the bulk and isolated, using molecular dynamics (MD) simulations. Leveraging both simulated dilatometry, Arrhenius analysis, and a procedure based on the evolution of percentage of <em>trans</em> states, we identified three distinct regimes with different behaviors, proposing a glass transition domain delimited by glass transition temperatures (<span><math><mrow><msubsup><mi>T</mi><mi>g</mi><mi>l</mi></msubsup></mrow></math></span> and <span><math><mrow><msubsup><mi>T</mi><mi>g</mi><mi>u</mi></msubsup></mrow></math></span> delimiting the transition domain, and <span><math><mrow><msubsup><mi>T</mi><mi>g</mi><mi>d</mi></msubsup></mrow></math></span> extracted from dilatometry) for bulk polymers. The two latter methods were then used to characterize this domain for isolated chains, allowing us to compare with data stemming from the bulk polymer. Our findings reveal that <em>T</em><sub><em>g</em></sub>s of an isolated chain are generally lower than that of the bulk except for <span><math><mrow><msubsup><mi>T</mi><mi>g</mi><mi>l</mi></msubsup></mrow></math></span> which remains unchanged. This observation aligns with previous experimental and simulation studies. The study further investigates the dynamic and static flexibilities of the polymer, correlating the potential energy barriers associated with dihedral transitions to the observed <span><math><mrow><msubsup><mi>T</mi><mi>g</mi><mi>l</mi></msubsup></mrow></math></span> and <span><math><mrow><msubsup><mi>T</mi><mi>g</mi><mi>u</mi></msubsup></mrow></math></span> values. We propose that <span><math><mrow><msubsup><mi>T</mi><mi>g</mi><mi>l</mi></msubsup></mrow></math></span> is an intrinsic property of the polymer, as it depends on the potential energy barrier required to escape from the <em>trans</em> state. In contrast, <span><math><mrow><msubsup><mi>T</mi><mi>g</mi><mi>u</mi></msubsup></mrow></math></span> is influenced by more complex interactions and is lower for the isolated chain.</div></div>\",\"PeriodicalId\":20628,\"journal\":{\"name\":\"Polymer Testing\",\"volume\":\"145 \",\"pages\":\"Article 108758\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Testing\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142941825000728\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Testing","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142941825000728","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们利用分子动力学(MD)模拟研究了聚乙烯(PE)链在整体和分离状态下的玻璃化转变行为。利用模拟膨胀法、阿伦尼乌斯分析和基于反态百分比演变的程序,我们确定了具有不同行为的三种不同体系,并提出了由玻璃化转变温度(Tgl和Tgu划分过渡域,Tgd从膨胀法中提取)划分的大块聚合物的玻璃化转变域。然后使用后两种方法来表征隔离链的该域,使我们能够与来自大块聚合物的数据进行比较。我们的研究结果表明,除了Tgl保持不变外,孤立链的Tgs一般低于散装链。这一观察结果与先前的实验和模拟研究一致。该研究进一步研究了聚合物的动态和静态柔韧性,将与二面体跃迁相关的势能势垒与观察到的Tgl和Tgu值联系起来。我们认为Tgl是聚合物的固有特性,因为它取决于从反式状态中逃脱所需的势能势垒。相比之下,Tgu受更复杂的相互作用的影响,并且对于孤立链来说较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring glass transition in polyethylene via molecular dynamics: From bulk to isolated chain
In this study, we investigate the glass transition behavior of polyethylene (PE) chains in the bulk and isolated, using molecular dynamics (MD) simulations. Leveraging both simulated dilatometry, Arrhenius analysis, and a procedure based on the evolution of percentage of trans states, we identified three distinct regimes with different behaviors, proposing a glass transition domain delimited by glass transition temperatures (Tgl and Tgu delimiting the transition domain, and Tgd extracted from dilatometry) for bulk polymers. The two latter methods were then used to characterize this domain for isolated chains, allowing us to compare with data stemming from the bulk polymer. Our findings reveal that Tgs of an isolated chain are generally lower than that of the bulk except for Tgl which remains unchanged. This observation aligns with previous experimental and simulation studies. The study further investigates the dynamic and static flexibilities of the polymer, correlating the potential energy barriers associated with dihedral transitions to the observed Tgl and Tgu values. We propose that Tgl is an intrinsic property of the polymer, as it depends on the potential energy barrier required to escape from the trans state. In contrast, Tgu is influenced by more complex interactions and is lower for the isolated chain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer Testing
Polymer Testing 工程技术-材料科学:表征与测试
CiteScore
10.70
自引率
5.90%
发文量
328
审稿时长
44 days
期刊介绍: Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization. The scope includes but is not limited to the following main topics: Novel testing methods and Chemical analysis • mechanical, thermal, electrical, chemical, imaging, spectroscopy, scattering and rheology Physical properties and behaviour of novel polymer systems • nanoscale properties, morphology, transport properties Degradation and recycling of polymeric materials when combined with novel testing or characterization methods • degradation, biodegradation, ageing and fire retardancy Modelling and Simulation work will be only considered when it is linked to new or previously published experimental results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信