Q1 Mathematics
Shankar Pariyar , Bishnu P. Lamichhane , Jeevan Kafle
{"title":"A time fractional advection-diffusion approach to air pollution: Modeling and analyzing pollutant dispersion dynamics","authors":"Shankar Pariyar ,&nbsp;Bishnu P. Lamichhane ,&nbsp;Jeevan Kafle","doi":"10.1016/j.padiff.2025.101149","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we investigate the dynamics of pollutant dispersion using a one-dimensional time-fractional advection-diffusion equation with the Caputo fractional derivative to predict air pollution levels. The focus is on pollutants such as <span><math><msub><mrow><mi>NH</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, <span><math><mi>CO</mi></math></span>, and <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, Dirichlet boundary conditions applied in homogeneous and heterogeneous environments. Numerical simulations are performed using the Grünwald–Letnikov method to discretize the fractional derivative, and analytical solutions are obtained through eigenfunction expansion. Results demonstrate that both numerical and analytical approaches accurately capture pollutant behavior, graphical visualizations illustrate concentration profiles and the impact of varying diffusivities. This work enhances the understanding of contaminant dispersion by addressing complex boundary conditions, integrating variable diffusivity, and employing fractional time derivatives. The combination of these methodologies highlights the benefits of using fractional models while visual analysis underscores their utility for improved pollution control and environmental management.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"14 ","pages":"Article 101149"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125000762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们使用带有卡普托分数导数的一维时间分数平流扩散方程来预测空气污染水平,从而研究污染物扩散的动力学。重点是 NH3、CO 和 CO2 等污染物,以及在均质和异质环境中应用的 Dirichlet 边界条件。使用 Grünwald-Letnikov 方法对分数导数离散化进行了数值模拟,并通过特征函数展开获得了分析解。结果表明,数值方法和分析方法都能准确捕捉污染物的行为,图形直观地展示了浓度曲线和不同扩散率的影响。这项工作通过处理复杂的边界条件、整合可变扩散性和采用分数时间导数,加深了对污染物扩散的理解。这些方法的结合凸显了使用分数模型的好处,而可视化分析则强调了其在改善污染控制和环境管理方面的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A time fractional advection-diffusion approach to air pollution: Modeling and analyzing pollutant dispersion dynamics
In this work, we investigate the dynamics of pollutant dispersion using a one-dimensional time-fractional advection-diffusion equation with the Caputo fractional derivative to predict air pollution levels. The focus is on pollutants such as NH3, CO, and CO2, Dirichlet boundary conditions applied in homogeneous and heterogeneous environments. Numerical simulations are performed using the Grünwald–Letnikov method to discretize the fractional derivative, and analytical solutions are obtained through eigenfunction expansion. Results demonstrate that both numerical and analytical approaches accurately capture pollutant behavior, graphical visualizations illustrate concentration profiles and the impact of varying diffusivities. This work enhances the understanding of contaminant dispersion by addressing complex boundary conditions, integrating variable diffusivity, and employing fractional time derivatives. The combination of these methodologies highlights the benefits of using fractional models while visual analysis underscores their utility for improved pollution control and environmental management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信