共轭传热问题的高级数值方法

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Marc-Paul Errera
{"title":"共轭传热问题的高级数值方法","authors":"Marc-Paul Errera","doi":"10.1016/j.compfluid.2025.106594","DOIUrl":null,"url":null,"abstract":"<div><div>Conjugate heat transfer (CHT) analysis is a simulation process that addresses the thermal interaction between a solid body and a fluid. It is a crucial aspect in a wide range of engineering applications, especially in the aerospace industry. This paper focuses on implementing adaptive coupling coefficients to optimize CHT by improving stability and simplicity. A mathematical model based on a normal mode stability analysis is employed. This study highlights the importance of a new dimensionless number, the \"numerical Biot number\", and explores adaptive coupling coefficients in three distinct aerothermal situations: steady coupling, steady coupling with radiation, and unsteady coupling. The main results of these three cases are compared, illustrated, and analyzed. The results demonstrate the potential of the theoretical approach, particularly in understanding the impact of different phenomena on the stability process and the challenges of convergence in certain conditions.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"292 ","pages":"Article 106594"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced numerical methods for conjugate heat transfer problems\",\"authors\":\"Marc-Paul Errera\",\"doi\":\"10.1016/j.compfluid.2025.106594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Conjugate heat transfer (CHT) analysis is a simulation process that addresses the thermal interaction between a solid body and a fluid. It is a crucial aspect in a wide range of engineering applications, especially in the aerospace industry. This paper focuses on implementing adaptive coupling coefficients to optimize CHT by improving stability and simplicity. A mathematical model based on a normal mode stability analysis is employed. This study highlights the importance of a new dimensionless number, the \\\"numerical Biot number\\\", and explores adaptive coupling coefficients in three distinct aerothermal situations: steady coupling, steady coupling with radiation, and unsteady coupling. The main results of these three cases are compared, illustrated, and analyzed. The results demonstrate the potential of the theoretical approach, particularly in understanding the impact of different phenomena on the stability process and the challenges of convergence in certain conditions.</div></div>\",\"PeriodicalId\":287,\"journal\":{\"name\":\"Computers & Fluids\",\"volume\":\"292 \",\"pages\":\"Article 106594\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045793025000544\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793025000544","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced numerical methods for conjugate heat transfer problems
Conjugate heat transfer (CHT) analysis is a simulation process that addresses the thermal interaction between a solid body and a fluid. It is a crucial aspect in a wide range of engineering applications, especially in the aerospace industry. This paper focuses on implementing adaptive coupling coefficients to optimize CHT by improving stability and simplicity. A mathematical model based on a normal mode stability analysis is employed. This study highlights the importance of a new dimensionless number, the "numerical Biot number", and explores adaptive coupling coefficients in three distinct aerothermal situations: steady coupling, steady coupling with radiation, and unsteady coupling. The main results of these three cases are compared, illustrated, and analyzed. The results demonstrate the potential of the theoretical approach, particularly in understanding the impact of different phenomena on the stability process and the challenges of convergence in certain conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信