Victor Quintanar-Zamora, Joseph P. Corbett, Rodrigo Ponce-Pérez, Armando Reyes Serrato, Carlos Antonio Corona-Garcia, Oscar Contreras-López, Jonathan Guerrero-Sanchez and Jesús Antonio Díaz*,
{"title":"挖掘TaN/MgO界面的原子细节:透射电子显微镜支持的 Ab Initio 研究","authors":"Victor Quintanar-Zamora, Joseph P. Corbett, Rodrigo Ponce-Pérez, Armando Reyes Serrato, Carlos Antonio Corona-Garcia, Oscar Contreras-López, Jonathan Guerrero-Sanchez and Jesús Antonio Díaz*, ","doi":"10.1021/acsmaterialsau.4c0017310.1021/acsmaterialsau.4c00173","DOIUrl":null,"url":null,"abstract":"<p >First-principles calculations of the TaN/MgO (001) interface were performed within the DFT framework. A thermodynamic stability analysis identified four stable interfaces. The most stable configuration for the interface consists of a TaO monolayer formed between the TaN and MgO layers. The density of states at <i>E</i><sub>F</sub> indicates that all interface models exhibit metallic behavior. The electron localization function reveals that all of these models exhibit ionic-type bonds at the interface. In addition to the computational simulations, epitaxial growth of the TaN thin films on FCC MgO (001) substrates was carried out by using pulsed laser deposition. Transmission electron microscopy images of the TaN/MgO (001) interface cross-section reveal that TaN film grows on the MgO substrate following the epitaxial relationship TaN [001] || MgO [001]. An FFT analysis of the TaN films demonstrates that the TaN lattice contracts at the interface with MgO conforming to the substrate lattice, corroborating the computational predictions. Our results provide evidence that strained TaO layers mediate the TaN/MgO (001) interface formation.</p>","PeriodicalId":29798,"journal":{"name":"ACS Materials Au","volume":"5 2","pages":"421–429 421–429"},"PeriodicalIF":5.7000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmaterialsau.4c00173","citationCount":"0","resultStr":"{\"title\":\"Digging into the Atomistic Details of the TaN/MgO Interface: An Ab Initio Study Supported by Transmission Electron Microscopy\",\"authors\":\"Victor Quintanar-Zamora, Joseph P. Corbett, Rodrigo Ponce-Pérez, Armando Reyes Serrato, Carlos Antonio Corona-Garcia, Oscar Contreras-López, Jonathan Guerrero-Sanchez and Jesús Antonio Díaz*, \",\"doi\":\"10.1021/acsmaterialsau.4c0017310.1021/acsmaterialsau.4c00173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >First-principles calculations of the TaN/MgO (001) interface were performed within the DFT framework. A thermodynamic stability analysis identified four stable interfaces. The most stable configuration for the interface consists of a TaO monolayer formed between the TaN and MgO layers. The density of states at <i>E</i><sub>F</sub> indicates that all interface models exhibit metallic behavior. The electron localization function reveals that all of these models exhibit ionic-type bonds at the interface. In addition to the computational simulations, epitaxial growth of the TaN thin films on FCC MgO (001) substrates was carried out by using pulsed laser deposition. Transmission electron microscopy images of the TaN/MgO (001) interface cross-section reveal that TaN film grows on the MgO substrate following the epitaxial relationship TaN [001] || MgO [001]. An FFT analysis of the TaN films demonstrates that the TaN lattice contracts at the interface with MgO conforming to the substrate lattice, corroborating the computational predictions. Our results provide evidence that strained TaO layers mediate the TaN/MgO (001) interface formation.</p>\",\"PeriodicalId\":29798,\"journal\":{\"name\":\"ACS Materials Au\",\"volume\":\"5 2\",\"pages\":\"421–429 421–429\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsmaterialsau.4c00173\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmaterialsau.4c00173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialsau.4c00173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Digging into the Atomistic Details of the TaN/MgO Interface: An Ab Initio Study Supported by Transmission Electron Microscopy
First-principles calculations of the TaN/MgO (001) interface were performed within the DFT framework. A thermodynamic stability analysis identified four stable interfaces. The most stable configuration for the interface consists of a TaO monolayer formed between the TaN and MgO layers. The density of states at EF indicates that all interface models exhibit metallic behavior. The electron localization function reveals that all of these models exhibit ionic-type bonds at the interface. In addition to the computational simulations, epitaxial growth of the TaN thin films on FCC MgO (001) substrates was carried out by using pulsed laser deposition. Transmission electron microscopy images of the TaN/MgO (001) interface cross-section reveal that TaN film grows on the MgO substrate following the epitaxial relationship TaN [001] || MgO [001]. An FFT analysis of the TaN films demonstrates that the TaN lattice contracts at the interface with MgO conforming to the substrate lattice, corroborating the computational predictions. Our results provide evidence that strained TaO layers mediate the TaN/MgO (001) interface formation.
期刊介绍:
ACS Materials Au is an open access journal publishing letters articles reviews and perspectives describing high-quality research at the forefront of fundamental and applied research and at the interface between materials and other disciplines such as chemistry engineering and biology. Papers that showcase multidisciplinary and innovative materials research addressing global challenges are especially welcome. Areas of interest include but are not limited to:Design synthesis characterization and evaluation of forefront and emerging materialsUnderstanding structure property performance relationships and their underlying mechanismsDevelopment of materials for energy environmental biomedical electronic and catalytic applications