鲁棒p型碲晶体管的热稳定钌触点

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
I K M Reaz Rahman, Taehoon Kim, Inha Kim, Naoki Higashitarumizu, Shu Wang, Shifan Wang, Hyong Min Kim, James Bullock, Virginia Altoe, Joel W. Ager III, Daryl C. Chrzan and Ali Javey*, 
{"title":"鲁棒p型碲晶体管的热稳定钌触点","authors":"I K M Reaz Rahman,&nbsp;Taehoon Kim,&nbsp;Inha Kim,&nbsp;Naoki Higashitarumizu,&nbsp;Shu Wang,&nbsp;Shifan Wang,&nbsp;Hyong Min Kim,&nbsp;James Bullock,&nbsp;Virginia Altoe,&nbsp;Joel W. Ager III,&nbsp;Daryl C. Chrzan and Ali Javey*,&nbsp;","doi":"10.1021/acs.nanolett.4c0655310.1021/acs.nanolett.4c06553","DOIUrl":null,"url":null,"abstract":"<p >Tellurium (Te) is attractive for <i>p</i>-channel transistors due to its high hole mobility. Despite having a low thermal budget suitable for back-end-of-line (BEOL) monolithic integration, the practical realization of Te transistors is hindered by its thermal stability. In this work, we investigate thermal stability for Te thin films grown via scalable thermal evaporation. Our findings identify ruthenium as a more thermally stable contact for <i>p</i>-type Te transistors, capable of withstanding temperatures up to 250 °C. Ruthenium exhibits significantly lower diffusivity in Te compared to other contact metals commonly used such as nickel and palladium. Using the transfer-length method, we measured a contact resistance of 1.25 kΩ·μm at the ruthenium–tellurium interface. Additionally, the incorporation of high-κ ZrO<sub>2</sub> encapsulation not only suppresses the sublimation of the Te channel at elevated temperatures but also serves as the gate dielectric in top-gate devices operating at 1 V, achieving an on/off current ratio of 10<sup>5</sup>.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 10","pages":"3956–3963 3956–3963"},"PeriodicalIF":9.1000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermally Stable Ruthenium Contact for Robust p-Type Tellurium Transistors\",\"authors\":\"I K M Reaz Rahman,&nbsp;Taehoon Kim,&nbsp;Inha Kim,&nbsp;Naoki Higashitarumizu,&nbsp;Shu Wang,&nbsp;Shifan Wang,&nbsp;Hyong Min Kim,&nbsp;James Bullock,&nbsp;Virginia Altoe,&nbsp;Joel W. Ager III,&nbsp;Daryl C. Chrzan and Ali Javey*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.4c0655310.1021/acs.nanolett.4c06553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Tellurium (Te) is attractive for <i>p</i>-channel transistors due to its high hole mobility. Despite having a low thermal budget suitable for back-end-of-line (BEOL) monolithic integration, the practical realization of Te transistors is hindered by its thermal stability. In this work, we investigate thermal stability for Te thin films grown via scalable thermal evaporation. Our findings identify ruthenium as a more thermally stable contact for <i>p</i>-type Te transistors, capable of withstanding temperatures up to 250 °C. Ruthenium exhibits significantly lower diffusivity in Te compared to other contact metals commonly used such as nickel and palladium. Using the transfer-length method, we measured a contact resistance of 1.25 kΩ·μm at the ruthenium–tellurium interface. Additionally, the incorporation of high-κ ZrO<sub>2</sub> encapsulation not only suppresses the sublimation of the Te channel at elevated temperatures but also serves as the gate dielectric in top-gate devices operating at 1 V, achieving an on/off current ratio of 10<sup>5</sup>.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 10\",\"pages\":\"3956–3963 3956–3963\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c06553\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c06553","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

碲(Te)由于其高空穴迁移率而成为p沟道晶体管的理想材料。尽管具有适合后端线(BEOL)单片集成的低热预算,但其热稳定性阻碍了Te晶体管的实际实现。在这项工作中,我们研究了通过可伸缩热蒸发生长的薄膜的热稳定性。我们的研究发现,对于p型Te晶体管来说,钌是一种更热稳定的触点,能够承受高达250°C的温度。与其他常用的接触金属(如镍和钯)相比,钌在Te中的扩散率明显较低。利用传递长度法,我们测得钌碲界面处的接触电阻为1.25 kΩ·μm。此外,高κ ZrO2封装的结合不仅抑制了高温下Te通道的升华,而且还在工作在1v的顶栅器件中充当栅极介质,实现了105的开/关电流比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Thermally Stable Ruthenium Contact for Robust p-Type Tellurium Transistors

Thermally Stable Ruthenium Contact for Robust p-Type Tellurium Transistors

Tellurium (Te) is attractive for p-channel transistors due to its high hole mobility. Despite having a low thermal budget suitable for back-end-of-line (BEOL) monolithic integration, the practical realization of Te transistors is hindered by its thermal stability. In this work, we investigate thermal stability for Te thin films grown via scalable thermal evaporation. Our findings identify ruthenium as a more thermally stable contact for p-type Te transistors, capable of withstanding temperatures up to 250 °C. Ruthenium exhibits significantly lower diffusivity in Te compared to other contact metals commonly used such as nickel and palladium. Using the transfer-length method, we measured a contact resistance of 1.25 kΩ·μm at the ruthenium–tellurium interface. Additionally, the incorporation of high-κ ZrO2 encapsulation not only suppresses the sublimation of the Te channel at elevated temperatures but also serves as the gate dielectric in top-gate devices operating at 1 V, achieving an on/off current ratio of 105.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信