氮化钛薄膜中量子阱态的可调功函数和表面能

IF 5.7 Q2 CHEMISTRY, PHYSICAL
Angus Huang, Yee-Heng Teh, Chin-Hsuan Chen, Sheng-Hsiung Hung, Jer-Fu Wang, Chih-Piao Chuu and Horng-Tay Jeng*, 
{"title":"氮化钛薄膜中量子阱态的可调功函数和表面能","authors":"Angus Huang,&nbsp;Yee-Heng Teh,&nbsp;Chin-Hsuan Chen,&nbsp;Sheng-Hsiung Hung,&nbsp;Jer-Fu Wang,&nbsp;Chih-Piao Chuu and Horng-Tay Jeng*,&nbsp;","doi":"10.1021/acsmaterialsau.4c0017610.1021/acsmaterialsau.4c00176","DOIUrl":null,"url":null,"abstract":"<p >High work function metals are crucial in various semiconductor applications. Titanium nitride (TiN) is particularly noteworthy as a high work function material in metal gate structures, which significantly enhances the transistor performance and reliability in advanced semiconductor devices. In this study, we employ first-principles calculations to demonstrate that the TiN work function oscillates with thickness due to the quantum well state effect. Furthermore, we investigate the termination and surface dependence of the work function across different crystallographic orientations. We show that the work function can be enhanced to up to 8.04 eV for TiN(111) with N-termination at five monolayers (5 MLs). Our findings provide valuable insights for fine-tuning the high work function of TiN.</p>","PeriodicalId":29798,"journal":{"name":"ACS Materials Au","volume":"5 2","pages":"430–437 430–437"},"PeriodicalIF":5.7000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmaterialsau.4c00176","citationCount":"0","resultStr":"{\"title\":\"Tunable Work Function and Surface Energy in Titanium Nitride (TiN) Thin Films through Quantum Well States\",\"authors\":\"Angus Huang,&nbsp;Yee-Heng Teh,&nbsp;Chin-Hsuan Chen,&nbsp;Sheng-Hsiung Hung,&nbsp;Jer-Fu Wang,&nbsp;Chih-Piao Chuu and Horng-Tay Jeng*,&nbsp;\",\"doi\":\"10.1021/acsmaterialsau.4c0017610.1021/acsmaterialsau.4c00176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >High work function metals are crucial in various semiconductor applications. Titanium nitride (TiN) is particularly noteworthy as a high work function material in metal gate structures, which significantly enhances the transistor performance and reliability in advanced semiconductor devices. In this study, we employ first-principles calculations to demonstrate that the TiN work function oscillates with thickness due to the quantum well state effect. Furthermore, we investigate the termination and surface dependence of the work function across different crystallographic orientations. We show that the work function can be enhanced to up to 8.04 eV for TiN(111) with N-termination at five monolayers (5 MLs). Our findings provide valuable insights for fine-tuning the high work function of TiN.</p>\",\"PeriodicalId\":29798,\"journal\":{\"name\":\"ACS Materials Au\",\"volume\":\"5 2\",\"pages\":\"430–437 430–437\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsmaterialsau.4c00176\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmaterialsau.4c00176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialsau.4c00176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

高功功能金属在各种半导体应用中是至关重要的。氮化钛(TiN)作为金属栅极结构中的高功功能材料,在先进半导体器件中显著提高了晶体管的性能和可靠性。在本研究中,我们采用第一性原理计算来证明由于量子阱态效应,TiN功函数随厚度而振荡。此外,我们研究了功函数在不同晶体取向上的终止和表面依赖性。结果表明,在5个单分子层(5 ml)上n端TiN(111)的功函数可以提高到8.04 eV。我们的发现为微调TiN的高功函数提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tunable Work Function and Surface Energy in Titanium Nitride (TiN) Thin Films through Quantum Well States

High work function metals are crucial in various semiconductor applications. Titanium nitride (TiN) is particularly noteworthy as a high work function material in metal gate structures, which significantly enhances the transistor performance and reliability in advanced semiconductor devices. In this study, we employ first-principles calculations to demonstrate that the TiN work function oscillates with thickness due to the quantum well state effect. Furthermore, we investigate the termination and surface dependence of the work function across different crystallographic orientations. We show that the work function can be enhanced to up to 8.04 eV for TiN(111) with N-termination at five monolayers (5 MLs). Our findings provide valuable insights for fine-tuning the high work function of TiN.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Materials Au
ACS Materials Au 材料科学-
CiteScore
5.00
自引率
0.00%
发文量
0
期刊介绍: ACS Materials Au is an open access journal publishing letters articles reviews and perspectives describing high-quality research at the forefront of fundamental and applied research and at the interface between materials and other disciplines such as chemistry engineering and biology. Papers that showcase multidisciplinary and innovative materials research addressing global challenges are especially welcome. Areas of interest include but are not limited to:Design synthesis characterization and evaluation of forefront and emerging materialsUnderstanding structure property performance relationships and their underlying mechanismsDevelopment of materials for energy environmental biomedical electronic and catalytic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信