神经急症治疗策略:一种以神经元为目标,透过铁下垂调节活性氧代谢的调节系统

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yibo Ying, Xiong Cai, Peng Dai, Yuchao Zhang, Jiali Lv, Zhiyang Huang, Xuehai Chen, Yusi Hu, Yunjie Shi, Xiaokun Li*, Dawei Jiang* and Zhouguang Wang*, 
{"title":"神经急症治疗策略:一种以神经元为目标,透过铁下垂调节活性氧代谢的调节系统","authors":"Yibo Ying,&nbsp;Xiong Cai,&nbsp;Peng Dai,&nbsp;Yuchao Zhang,&nbsp;Jiali Lv,&nbsp;Zhiyang Huang,&nbsp;Xuehai Chen,&nbsp;Yusi Hu,&nbsp;Yunjie Shi,&nbsp;Xiaokun Li*,&nbsp;Dawei Jiang* and Zhouguang Wang*,&nbsp;","doi":"10.1021/acsnano.4c1570510.1021/acsnano.4c15705","DOIUrl":null,"url":null,"abstract":"<p >Spinal cord injury (SCI) represents a significant clinical challenge. Following SCI, the implementation of protective measures for neurons is critically important. Current clinical applications of hormone pulse therapy exhibit variable efficacy and considerable side effects, highlighting an urgent need for therapeutic strategies. This study investigates the pathological conditions of ischemia and hypoxia in the SCI region, complemented by early transcriptome sequencing postinjury. Our findings suggest that targeting ferroptosis is pivotal for early neuroprotection following SCI. Aiming at the cascade effect of mitochondrial damage leading to reactive oxygen species (ROS) production, along with extensive ROS-mediated lysosomal damage during ferroptosis signaling, we developed a liposome-based system for regulating iron metabolism─DTLS@CAT. This innovative liposome is designed to specifically target neuronal mitochondria, effectively eliminate mitoROS, and modulate complex interactions among iron metabolism, mitochondria, lysosomes, and ROS to facilitate recovery from SCI.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 9","pages":"8753–8772 8753–8772"},"PeriodicalIF":16.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neurological Emergency Treatment Strategy: A Neuron-Targeted Regulation System for Reactive Oxygen Species Metabolism through Ferroptosis Modulation\",\"authors\":\"Yibo Ying,&nbsp;Xiong Cai,&nbsp;Peng Dai,&nbsp;Yuchao Zhang,&nbsp;Jiali Lv,&nbsp;Zhiyang Huang,&nbsp;Xuehai Chen,&nbsp;Yusi Hu,&nbsp;Yunjie Shi,&nbsp;Xiaokun Li*,&nbsp;Dawei Jiang* and Zhouguang Wang*,&nbsp;\",\"doi\":\"10.1021/acsnano.4c1570510.1021/acsnano.4c15705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Spinal cord injury (SCI) represents a significant clinical challenge. Following SCI, the implementation of protective measures for neurons is critically important. Current clinical applications of hormone pulse therapy exhibit variable efficacy and considerable side effects, highlighting an urgent need for therapeutic strategies. This study investigates the pathological conditions of ischemia and hypoxia in the SCI region, complemented by early transcriptome sequencing postinjury. Our findings suggest that targeting ferroptosis is pivotal for early neuroprotection following SCI. Aiming at the cascade effect of mitochondrial damage leading to reactive oxygen species (ROS) production, along with extensive ROS-mediated lysosomal damage during ferroptosis signaling, we developed a liposome-based system for regulating iron metabolism─DTLS@CAT. This innovative liposome is designed to specifically target neuronal mitochondria, effectively eliminate mitoROS, and modulate complex interactions among iron metabolism, mitochondria, lysosomes, and ROS to facilitate recovery from SCI.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 9\",\"pages\":\"8753–8772 8753–8772\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.4c15705\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c15705","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

脊髓损伤(SCI)是一个重大的临床挑战。脊髓损伤后,神经元保护措施的实施至关重要。目前临床应用的激素脉冲疗法疗效不一,副作用大,迫切需要治疗策略。本研究探讨了脊髓损伤区域缺血和缺氧的病理情况,并辅以损伤后早期转录组测序。我们的研究结果表明,针对铁下垂是脊髓损伤后早期神经保护的关键。针对线粒体损伤导致活性氧(ROS)产生的级联效应,以及在铁死亡信号传导过程中ROS介导的广泛溶酶体损伤,我们开发了一种基于脂质体的铁代谢调节系统─DTLS@CAT。这种创新的脂质体专门针对神经元线粒体,有效消除mitoROS,调节铁代谢、线粒体、溶酶体和ROS之间的复杂相互作用,促进脊髓损伤的恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Neurological Emergency Treatment Strategy: A Neuron-Targeted Regulation System for Reactive Oxygen Species Metabolism through Ferroptosis Modulation

Neurological Emergency Treatment Strategy: A Neuron-Targeted Regulation System for Reactive Oxygen Species Metabolism through Ferroptosis Modulation

Spinal cord injury (SCI) represents a significant clinical challenge. Following SCI, the implementation of protective measures for neurons is critically important. Current clinical applications of hormone pulse therapy exhibit variable efficacy and considerable side effects, highlighting an urgent need for therapeutic strategies. This study investigates the pathological conditions of ischemia and hypoxia in the SCI region, complemented by early transcriptome sequencing postinjury. Our findings suggest that targeting ferroptosis is pivotal for early neuroprotection following SCI. Aiming at the cascade effect of mitochondrial damage leading to reactive oxygen species (ROS) production, along with extensive ROS-mediated lysosomal damage during ferroptosis signaling, we developed a liposome-based system for regulating iron metabolism─DTLS@CAT. This innovative liposome is designed to specifically target neuronal mitochondria, effectively eliminate mitoROS, and modulate complex interactions among iron metabolism, mitochondria, lysosomes, and ROS to facilitate recovery from SCI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信