基于改进残差网络和门控循环单元的动态化工过程故障诊断

IF 4.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Shiqian HAN, Pingping WANG*, Cheng ZHANG and Jun WANG, 
{"title":"基于改进残差网络和门控循环单元的动态化工过程故障诊断","authors":"Shiqian HAN,&nbsp;Pingping WANG*,&nbsp;Cheng ZHANG and Jun WANG,&nbsp;","doi":"10.1021/acsomega.4c0375710.1021/acsomega.4c03757","DOIUrl":null,"url":null,"abstract":"<p >Aiming at the challenge of distinguishing the contributions of variables in dynamic chemical process data, this paper proposes a novel fault diagnosis method based on the IResNet-GRU model. First, we utilize principal component analysis to compute a correlation matrix, which serves as the input for an attention module. This approach enables the evaluation of feature contributions to predictions, thereby identifying the root-cause variables responsible for faults. Concurrently, we enhance the residual network (ResNet) with the attention module to assign weights to the extracted features. The improved ResNet (IResNet) can differentiate the significance of the monitored variables. Second, we augment the raw data into two-dimensional data using sliding window technology, capturing spatial and temporal data features. Finally, a gated recurrent unit is integrated to extract dynamic features from the augmented two-dimensional data effectively. The proposed method is validated using the Tennessee–Eastman chemical process. The diagnosis results demonstrate that the proposed method outperforms conventional methods.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 9","pages":"8859–8869 8859–8869"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c03757","citationCount":"0","resultStr":"{\"title\":\"Fault Diagnosis of Dynamic Chemical Processes Based on Improved Residual Network Combined with a Gated Recurrent Unit\",\"authors\":\"Shiqian HAN,&nbsp;Pingping WANG*,&nbsp;Cheng ZHANG and Jun WANG,&nbsp;\",\"doi\":\"10.1021/acsomega.4c0375710.1021/acsomega.4c03757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Aiming at the challenge of distinguishing the contributions of variables in dynamic chemical process data, this paper proposes a novel fault diagnosis method based on the IResNet-GRU model. First, we utilize principal component analysis to compute a correlation matrix, which serves as the input for an attention module. This approach enables the evaluation of feature contributions to predictions, thereby identifying the root-cause variables responsible for faults. Concurrently, we enhance the residual network (ResNet) with the attention module to assign weights to the extracted features. The improved ResNet (IResNet) can differentiate the significance of the monitored variables. Second, we augment the raw data into two-dimensional data using sliding window technology, capturing spatial and temporal data features. Finally, a gated recurrent unit is integrated to extract dynamic features from the augmented two-dimensional data effectively. The proposed method is validated using the Tennessee–Eastman chemical process. The diagnosis results demonstrate that the proposed method outperforms conventional methods.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 9\",\"pages\":\"8859–8869 8859–8869\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c03757\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.4c03757\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c03757","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

针对化工过程动态数据中各变量的贡献难以区分的问题,提出了一种基于IResNet-GRU模型的故障诊断方法。首先,我们利用主成分分析来计算相关矩阵,作为注意力模块的输入。这种方法能够评估特征对预测的贡献,从而确定导致故障的根本原因变量。同时,我们用注意力模块增强残差网络(ResNet),为提取的特征分配权重。改进后的ResNet (IResNet)可以区分被监测变量的重要性。其次,我们利用滑动窗口技术将原始数据增强为二维数据,捕捉数据的时空特征。最后,结合门控递归单元,有效地从增强后的二维数据中提取动态特征。采用Tennessee-Eastman化学过程验证了该方法的有效性。结果表明,该方法优于传统的诊断方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault Diagnosis of Dynamic Chemical Processes Based on Improved Residual Network Combined with a Gated Recurrent Unit

Aiming at the challenge of distinguishing the contributions of variables in dynamic chemical process data, this paper proposes a novel fault diagnosis method based on the IResNet-GRU model. First, we utilize principal component analysis to compute a correlation matrix, which serves as the input for an attention module. This approach enables the evaluation of feature contributions to predictions, thereby identifying the root-cause variables responsible for faults. Concurrently, we enhance the residual network (ResNet) with the attention module to assign weights to the extracted features. The improved ResNet (IResNet) can differentiate the significance of the monitored variables. Second, we augment the raw data into two-dimensional data using sliding window technology, capturing spatial and temporal data features. Finally, a gated recurrent unit is integrated to extract dynamic features from the augmented two-dimensional data effectively. The proposed method is validated using the Tennessee–Eastman chemical process. The diagnosis results demonstrate that the proposed method outperforms conventional methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信