交流母线微电网放电速率一致性三时间尺度控制及大信号稳定性分析

IF 5.4 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Maria Camila Merchán-Riveros, Carolina Albea, Franciso Salas
{"title":"交流母线微电网放电速率一致性三时间尺度控制及大信号稳定性分析","authors":"Maria Camila Merchán-Riveros,&nbsp;Carolina Albea,&nbsp;Franciso Salas","doi":"10.1016/j.conengprac.2025.106299","DOIUrl":null,"url":null,"abstract":"<div><div>A distributed control scheme for islanded AC-bus microgrids is proposed, based on multi-agent system and singular perturbation theory. The goal is to achieve a balanced State Of Charge (SOC) for each Battery Energy Storage System (BESS) in discharging mode, ensuring stability properties of a large-signal model that considers the primary and secondary control loop dynamics. The power inverters are controlled through a voltage and current loop. Moreover, a droop control and consensus algorithm are proposed to ensure that the SOC of these BESSs are balanced. Furthermore, large-signal stability analysis is assessed for the complete network system by using singular perturbation theory. Indeed, through an appropriate selection of the parameters, the dynamics exhibit three-time-scale separation to fit each control goal (power converter control, droop control and consensus control). Experimental results on an Imperix power test bench validate the proposed control scheme, and verify the reliability and robustness with respect to any connection/disconnection event or communication failure through different scenarios.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"159 ","pages":"Article 106299"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-time-scale control for discharging rate consensus and large-signal stability analysis in AC-bus microgrids\",\"authors\":\"Maria Camila Merchán-Riveros,&nbsp;Carolina Albea,&nbsp;Franciso Salas\",\"doi\":\"10.1016/j.conengprac.2025.106299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A distributed control scheme for islanded AC-bus microgrids is proposed, based on multi-agent system and singular perturbation theory. The goal is to achieve a balanced State Of Charge (SOC) for each Battery Energy Storage System (BESS) in discharging mode, ensuring stability properties of a large-signal model that considers the primary and secondary control loop dynamics. The power inverters are controlled through a voltage and current loop. Moreover, a droop control and consensus algorithm are proposed to ensure that the SOC of these BESSs are balanced. Furthermore, large-signal stability analysis is assessed for the complete network system by using singular perturbation theory. Indeed, through an appropriate selection of the parameters, the dynamics exhibit three-time-scale separation to fit each control goal (power converter control, droop control and consensus control). Experimental results on an Imperix power test bench validate the proposed control scheme, and verify the reliability and robustness with respect to any connection/disconnection event or communication failure through different scenarios.</div></div>\",\"PeriodicalId\":50615,\"journal\":{\"name\":\"Control Engineering Practice\",\"volume\":\"159 \",\"pages\":\"Article 106299\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Control Engineering Practice\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0967066125000620\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066125000620","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于多智能体系统和奇异摄动理论的孤岛交流母线微电网分布式控制方案。目标是在放电模式下实现每个电池储能系统(BESS)的平衡充电状态(SOC),确保考虑主、次控制回路动力学的大信号模型的稳定性。功率逆变器通过电压和电流回路控制。此外,提出了一种下垂控制和一致性算法,以确保这些bess的SOC是平衡的。在此基础上,利用奇异摄动理论对完整网络系统进行了大信号稳定性分析。事实上,通过适当选择参数,动力学表现出三个时间尺度的分离,以适应每个控制目标(功率转换器控制,下垂控制和共识控制)。在Imperix功率试验台上的实验结果验证了所提出的控制方案,并通过不同的场景验证了在任何连接/断开事件或通信故障情况下的可靠性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three-time-scale control for discharging rate consensus and large-signal stability analysis in AC-bus microgrids
A distributed control scheme for islanded AC-bus microgrids is proposed, based on multi-agent system and singular perturbation theory. The goal is to achieve a balanced State Of Charge (SOC) for each Battery Energy Storage System (BESS) in discharging mode, ensuring stability properties of a large-signal model that considers the primary and secondary control loop dynamics. The power inverters are controlled through a voltage and current loop. Moreover, a droop control and consensus algorithm are proposed to ensure that the SOC of these BESSs are balanced. Furthermore, large-signal stability analysis is assessed for the complete network system by using singular perturbation theory. Indeed, through an appropriate selection of the parameters, the dynamics exhibit three-time-scale separation to fit each control goal (power converter control, droop control and consensus control). Experimental results on an Imperix power test bench validate the proposed control scheme, and verify the reliability and robustness with respect to any connection/disconnection event or communication failure through different scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Control Engineering Practice
Control Engineering Practice 工程技术-工程:电子与电气
CiteScore
9.20
自引率
12.20%
发文量
183
审稿时长
44 days
期刊介绍: Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper. The scope of Control Engineering Practice matches the activities of IFAC. Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信