Maria Camila Merchán-Riveros, Carolina Albea, Franciso Salas
{"title":"交流母线微电网放电速率一致性三时间尺度控制及大信号稳定性分析","authors":"Maria Camila Merchán-Riveros, Carolina Albea, Franciso Salas","doi":"10.1016/j.conengprac.2025.106299","DOIUrl":null,"url":null,"abstract":"<div><div>A distributed control scheme for islanded AC-bus microgrids is proposed, based on multi-agent system and singular perturbation theory. The goal is to achieve a balanced State Of Charge (SOC) for each Battery Energy Storage System (BESS) in discharging mode, ensuring stability properties of a large-signal model that considers the primary and secondary control loop dynamics. The power inverters are controlled through a voltage and current loop. Moreover, a droop control and consensus algorithm are proposed to ensure that the SOC of these BESSs are balanced. Furthermore, large-signal stability analysis is assessed for the complete network system by using singular perturbation theory. Indeed, through an appropriate selection of the parameters, the dynamics exhibit three-time-scale separation to fit each control goal (power converter control, droop control and consensus control). Experimental results on an Imperix power test bench validate the proposed control scheme, and verify the reliability and robustness with respect to any connection/disconnection event or communication failure through different scenarios.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"159 ","pages":"Article 106299"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-time-scale control for discharging rate consensus and large-signal stability analysis in AC-bus microgrids\",\"authors\":\"Maria Camila Merchán-Riveros, Carolina Albea, Franciso Salas\",\"doi\":\"10.1016/j.conengprac.2025.106299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A distributed control scheme for islanded AC-bus microgrids is proposed, based on multi-agent system and singular perturbation theory. The goal is to achieve a balanced State Of Charge (SOC) for each Battery Energy Storage System (BESS) in discharging mode, ensuring stability properties of a large-signal model that considers the primary and secondary control loop dynamics. The power inverters are controlled through a voltage and current loop. Moreover, a droop control and consensus algorithm are proposed to ensure that the SOC of these BESSs are balanced. Furthermore, large-signal stability analysis is assessed for the complete network system by using singular perturbation theory. Indeed, through an appropriate selection of the parameters, the dynamics exhibit three-time-scale separation to fit each control goal (power converter control, droop control and consensus control). Experimental results on an Imperix power test bench validate the proposed control scheme, and verify the reliability and robustness with respect to any connection/disconnection event or communication failure through different scenarios.</div></div>\",\"PeriodicalId\":50615,\"journal\":{\"name\":\"Control Engineering Practice\",\"volume\":\"159 \",\"pages\":\"Article 106299\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Control Engineering Practice\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0967066125000620\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066125000620","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Three-time-scale control for discharging rate consensus and large-signal stability analysis in AC-bus microgrids
A distributed control scheme for islanded AC-bus microgrids is proposed, based on multi-agent system and singular perturbation theory. The goal is to achieve a balanced State Of Charge (SOC) for each Battery Energy Storage System (BESS) in discharging mode, ensuring stability properties of a large-signal model that considers the primary and secondary control loop dynamics. The power inverters are controlled through a voltage and current loop. Moreover, a droop control and consensus algorithm are proposed to ensure that the SOC of these BESSs are balanced. Furthermore, large-signal stability analysis is assessed for the complete network system by using singular perturbation theory. Indeed, through an appropriate selection of the parameters, the dynamics exhibit three-time-scale separation to fit each control goal (power converter control, droop control and consensus control). Experimental results on an Imperix power test bench validate the proposed control scheme, and verify the reliability and robustness with respect to any connection/disconnection event or communication failure through different scenarios.
期刊介绍:
Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper.
The scope of Control Engineering Practice matches the activities of IFAC.
Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.