使用波长敏感型非易失性 MoTe2 同质结的生物运动感知技术

IF 6.7 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Haoxiang Tian, Yi Cui, Miao Zhang, Xinrui Chen, Gaofeng Rao, Mingjie Wang, Haonan Sun, Kehan Wu, Jianwen Huang, Xianfu Wang
{"title":"使用波长敏感型非易失性 MoTe2 同质结的生物运动感知技术","authors":"Haoxiang Tian, Yi Cui, Miao Zhang, Xinrui Chen, Gaofeng Rao, Mingjie Wang, Haonan Sun, Kehan Wu, Jianwen Huang, Xianfu Wang","doi":"10.1021/acsphotonics.4c02399","DOIUrl":null,"url":null,"abstract":"Neuromorphic sensors with the capability to simultaneously sense and process dynamic images show great potential for data-centric in-sensor motion perception. However, the presence of persistent background noise and redundant computational burdens limits perception accuracy and efficiency. Here, we present wavelength-sensitive bioinspired neuromorphic devices that integrate the high-level preprocessing of the human retina and ultraviolet feature extraction of the fisheye, enabling efficient image compression and background filtering capabilities to enhance motion perception. By storing dynamic image information as photoresponsivity in our nonvolatile MoTe<sub>2</sub> homojunction, mass data can be compressed through multiplying trainable light intensity and photoresponsivity. This induces an <i>n</i>-fold reduction in backend computational requirements for <i>n</i> × <i>n</i> image motion perception while preserving a recognition accuracy of 100%. Furthermore, we successfully identify and track the motion of anemonefish obscured in the indistinguishable background, achieving enhanced recognition accuracy from 70% to 100%. This work showcases the substantial potential for developing intelligent vision systems with feature information extraction and high-level computational capabilities.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"213 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioinspired Motion Perception Using the Wavelength-Sensitive Nonvolatile MoTe2 Homojunction\",\"authors\":\"Haoxiang Tian, Yi Cui, Miao Zhang, Xinrui Chen, Gaofeng Rao, Mingjie Wang, Haonan Sun, Kehan Wu, Jianwen Huang, Xianfu Wang\",\"doi\":\"10.1021/acsphotonics.4c02399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neuromorphic sensors with the capability to simultaneously sense and process dynamic images show great potential for data-centric in-sensor motion perception. However, the presence of persistent background noise and redundant computational burdens limits perception accuracy and efficiency. Here, we present wavelength-sensitive bioinspired neuromorphic devices that integrate the high-level preprocessing of the human retina and ultraviolet feature extraction of the fisheye, enabling efficient image compression and background filtering capabilities to enhance motion perception. By storing dynamic image information as photoresponsivity in our nonvolatile MoTe<sub>2</sub> homojunction, mass data can be compressed through multiplying trainable light intensity and photoresponsivity. This induces an <i>n</i>-fold reduction in backend computational requirements for <i>n</i> × <i>n</i> image motion perception while preserving a recognition accuracy of 100%. Furthermore, we successfully identify and track the motion of anemonefish obscured in the indistinguishable background, achieving enhanced recognition accuracy from 70% to 100%. This work showcases the substantial potential for developing intelligent vision systems with feature information extraction and high-level computational capabilities.\",\"PeriodicalId\":23,\"journal\":{\"name\":\"ACS Photonics\",\"volume\":\"213 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1021/acsphotonics.4c02399\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c02399","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

具有同时感知和处理动态图像能力的神经形态传感器显示出以数据为中心的传感器内运动感知的巨大潜力。然而,持续的背景噪声和冗余的计算负担的存在限制了感知的准确性和效率。在这里,我们提出了波长敏感的生物启发神经形态设备,该设备集成了人类视网膜的高级预处理和鱼眼的紫外线特征提取,实现了有效的图像压缩和背景过滤功能,以增强运动感知。通过将动态图像信息作为光响应性存储在我们的非易失性MoTe2同质结中,可以通过将可训练光强度和光响应性相乘来压缩大量数据。这导致n × n图像运动感知的后端计算需求减少了n倍,同时保持了100%的识别精度。此外,我们成功地识别和跟踪了在难以区分的背景下被遮挡的海葵鱼的运动,将识别准确率从70%提高到100%。这项工作展示了开发具有特征信息提取和高级计算能力的智能视觉系统的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bioinspired Motion Perception Using the Wavelength-Sensitive Nonvolatile MoTe2 Homojunction

Bioinspired Motion Perception Using the Wavelength-Sensitive Nonvolatile MoTe2 Homojunction
Neuromorphic sensors with the capability to simultaneously sense and process dynamic images show great potential for data-centric in-sensor motion perception. However, the presence of persistent background noise and redundant computational burdens limits perception accuracy and efficiency. Here, we present wavelength-sensitive bioinspired neuromorphic devices that integrate the high-level preprocessing of the human retina and ultraviolet feature extraction of the fisheye, enabling efficient image compression and background filtering capabilities to enhance motion perception. By storing dynamic image information as photoresponsivity in our nonvolatile MoTe2 homojunction, mass data can be compressed through multiplying trainable light intensity and photoresponsivity. This induces an n-fold reduction in backend computational requirements for n × n image motion perception while preserving a recognition accuracy of 100%. Furthermore, we successfully identify and track the motion of anemonefish obscured in the indistinguishable background, achieving enhanced recognition accuracy from 70% to 100%. This work showcases the substantial potential for developing intelligent vision systems with feature information extraction and high-level computational capabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信