Jiying Xu, Yichen Yang, Runchen Lai, Yangning Fan, Shengnan Liu, Gan Zhang, Zixiang Wang, Baodan Zhao, Chen Zou, Dawei Di
{"title":"用于激光应用的准二维溴化铅包荧光体的低阈值放大自发辐射","authors":"Jiying Xu, Yichen Yang, Runchen Lai, Yangning Fan, Shengnan Liu, Gan Zhang, Zixiang Wang, Baodan Zhao, Chen Zou, Dawei Di","doi":"10.1021/acsnano.5c00184","DOIUrl":null,"url":null,"abstract":"Quasi-two-dimensional (quasi-2D) lead halide perovskite materials have shown great potential as gain media for amplified spontaneous emission (ASE) and lasing. Due to the complexity of the mixed-dimensional perovskite materials, factors influencing their ASE thresholds remain unclear, limiting the pace of development in this emerging area of research. Here, we report exceptionally low ASE thresholds of ∼2.23 μJ cm<sup>–2</sup> with high stability in quasi-2D lead–bromide perovskite semiconductors. Improved gain coefficients, suppressed Auger recombination, effective coupling between the optical field and the gain medium, and minimized scattering losses are found to be some of the key contributors to the low-threshold ASE. The optimized materials lead to the demonstration of a low-threshold, single-mode perovskite laser based on a distributed feedback (DFB) optical resonator, yielding a low lasing threshold of 0.69 μJ cm<sup>–2</sup>. We expect our findings to clarify some of the key design principles of low-threshold ASE in perovskite semiconductors for lasing applications.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"21 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Threshold Amplified Spontaneous Emission from Quasi-2D Lead–Bromide Perovskites for Lasing Applications\",\"authors\":\"Jiying Xu, Yichen Yang, Runchen Lai, Yangning Fan, Shengnan Liu, Gan Zhang, Zixiang Wang, Baodan Zhao, Chen Zou, Dawei Di\",\"doi\":\"10.1021/acsnano.5c00184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quasi-two-dimensional (quasi-2D) lead halide perovskite materials have shown great potential as gain media for amplified spontaneous emission (ASE) and lasing. Due to the complexity of the mixed-dimensional perovskite materials, factors influencing their ASE thresholds remain unclear, limiting the pace of development in this emerging area of research. Here, we report exceptionally low ASE thresholds of ∼2.23 μJ cm<sup>–2</sup> with high stability in quasi-2D lead–bromide perovskite semiconductors. Improved gain coefficients, suppressed Auger recombination, effective coupling between the optical field and the gain medium, and minimized scattering losses are found to be some of the key contributors to the low-threshold ASE. The optimized materials lead to the demonstration of a low-threshold, single-mode perovskite laser based on a distributed feedback (DFB) optical resonator, yielding a low lasing threshold of 0.69 μJ cm<sup>–2</sup>. We expect our findings to clarify some of the key design principles of low-threshold ASE in perovskite semiconductors for lasing applications.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.5c00184\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c00184","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Low-Threshold Amplified Spontaneous Emission from Quasi-2D Lead–Bromide Perovskites for Lasing Applications
Quasi-two-dimensional (quasi-2D) lead halide perovskite materials have shown great potential as gain media for amplified spontaneous emission (ASE) and lasing. Due to the complexity of the mixed-dimensional perovskite materials, factors influencing their ASE thresholds remain unclear, limiting the pace of development in this emerging area of research. Here, we report exceptionally low ASE thresholds of ∼2.23 μJ cm–2 with high stability in quasi-2D lead–bromide perovskite semiconductors. Improved gain coefficients, suppressed Auger recombination, effective coupling between the optical field and the gain medium, and minimized scattering losses are found to be some of the key contributors to the low-threshold ASE. The optimized materials lead to the demonstration of a low-threshold, single-mode perovskite laser based on a distributed feedback (DFB) optical resonator, yielding a low lasing threshold of 0.69 μJ cm–2. We expect our findings to clarify some of the key design principles of low-threshold ASE in perovskite semiconductors for lasing applications.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.