揭示了半透明Ta3N5光电极在高性能和可重复的太阳能氧化还原液流电池中的潜力

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Filipe Moisés M. Francisco, Paula Dias and Adélio Mendes
{"title":"揭示了半透明Ta3N5光电极在高性能和可重复的太阳能氧化还原液流电池中的潜力","authors":"Filipe Moisés M. Francisco, Paula Dias and Adélio Mendes","doi":"10.1039/D4TA08136F","DOIUrl":null,"url":null,"abstract":"<p >A solar redox flow cell (SRFC) converts solar energy into storable electrochemical energy and heat; when connected to a redox flow battery, it can produce dispatchable electricity. Despite its versatility, a SRFC is still considered to be at a low technology readiness level (TRL), mainly due to the absence of abundant, efficient, and stable semiconductors. Tantalum nitride (Ta<small><sub>3</sub></small>N<small><sub>5</sub></small>) photoelectrodes have garnered special interest for photoelectrochemical water-splitting applications, particularly those using opaque Ta substrates. However, for SRFCs, which are normally based on coloured electrolytes, Ta<small><sub>3</sub></small>N<small><sub>5</sub></small> needs to be semi-transparent to allow backside sunlight illumination. Herein, for the first time, the electrophoretic deposition technique was optimized for synthesizing semi-transparent Ta<small><sub>3</sub></small>N<small><sub>5</sub></small>. The best-performing bare photoelectrodes were prepared over a 30 nm Ta-doped TiO<small><sub>2</sub></small> (TTO) underlayer, and with an electrophoretic time of 7 min and an annealing temperature of 425 °C in an NH<small><sub>3</sub></small> atmosphere, displaying an unprecedented photocurrent density of <em>ca.</em> 4.0 mA cm<small><sup>−2</sup></small>, and a maximum power density of <em>ca.</em> 1.1 mW cm<small><sup>−2</sup></small>, using a ferrocyanide-based electrolyte. These conditions allowed improving the charge-transfer kinetics and reducing the recombination rates, as observed by electrochemical impedance spectroscopy analysis. The optimized Ta<small><sub>3</sub></small>N<small><sub>5</sub></small> photoelectrode was paired with a perovskite solar cell, demonstrating <em>ca.</em> 100 h of operation in an aqueous alkaline electrolyte, based on ferrocyanide (K<small><sub>4</sub></small>Fe(CN)<small><sub>6</sub></small>) and anthraquinone-2,7-disulphonate (2,7-AQDS) redox pairs.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 20","pages":" 14601-14611"},"PeriodicalIF":9.5000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ta/d4ta08136f?page=search","citationCount":"0","resultStr":"{\"title\":\"Unlocking the potential of semi-transparent Ta3N5 photoelectrodes for high-performance, reproducible solar redox flow cells†\",\"authors\":\"Filipe Moisés M. Francisco, Paula Dias and Adélio Mendes\",\"doi\":\"10.1039/D4TA08136F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A solar redox flow cell (SRFC) converts solar energy into storable electrochemical energy and heat; when connected to a redox flow battery, it can produce dispatchable electricity. Despite its versatility, a SRFC is still considered to be at a low technology readiness level (TRL), mainly due to the absence of abundant, efficient, and stable semiconductors. Tantalum nitride (Ta<small><sub>3</sub></small>N<small><sub>5</sub></small>) photoelectrodes have garnered special interest for photoelectrochemical water-splitting applications, particularly those using opaque Ta substrates. However, for SRFCs, which are normally based on coloured electrolytes, Ta<small><sub>3</sub></small>N<small><sub>5</sub></small> needs to be semi-transparent to allow backside sunlight illumination. Herein, for the first time, the electrophoretic deposition technique was optimized for synthesizing semi-transparent Ta<small><sub>3</sub></small>N<small><sub>5</sub></small>. The best-performing bare photoelectrodes were prepared over a 30 nm Ta-doped TiO<small><sub>2</sub></small> (TTO) underlayer, and with an electrophoretic time of 7 min and an annealing temperature of 425 °C in an NH<small><sub>3</sub></small> atmosphere, displaying an unprecedented photocurrent density of <em>ca.</em> 4.0 mA cm<small><sup>−2</sup></small>, and a maximum power density of <em>ca.</em> 1.1 mW cm<small><sup>−2</sup></small>, using a ferrocyanide-based electrolyte. These conditions allowed improving the charge-transfer kinetics and reducing the recombination rates, as observed by electrochemical impedance spectroscopy analysis. The optimized Ta<small><sub>3</sub></small>N<small><sub>5</sub></small> photoelectrode was paired with a perovskite solar cell, demonstrating <em>ca.</em> 100 h of operation in an aqueous alkaline electrolyte, based on ferrocyanide (K<small><sub>4</sub></small>Fe(CN)<small><sub>6</sub></small>) and anthraquinone-2,7-disulphonate (2,7-AQDS) redox pairs.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 20\",\"pages\":\" 14601-14611\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ta/d4ta08136f?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta08136f\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta08136f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

太阳能氧化还原液流电池(SRFC)是一种独特的利用光电化学(PEC)电池将太阳能有效地转化为电化学可存储的能量和热量的电池。产生的太阳能燃料可以很容易地在氧化还原液流电池(RFB)中转化为电能。然而,srfc仍然处于较低的技术就绪水平(TRL),主要是由于半导体效率低,系统耐久性低,以及缺乏经过验证的演示。通过利用氮化钽(Ta3N5)光电极的独特性能,本工作研究了这种半导体材料在高性能SRFC器件开发中的作用。由于迄今为止取得的令人印象深刻的光电流密度,不透明的Ta3N5光电极对PEC水分解产生了特别的兴趣。然而,对于基于有色电解质的SRFC应用,Ta3N5需要是半透明的,以允许背面的阳光照射。电泳沉积(EPD)是制备半透明Ta3N5薄膜的合适方法。本文首次对合成条件进行了优化,重点研究了在NH3气氛下EPD循环时间和退火温度,并采用掺Ta的TiO2 (TTO)衬底同时解决了重现性和高效率的问题。制备了性能最佳的裸Ta3N5光电极,电泳沉积时间为7 min,在425℃下退火,使用氰化铁基电解质,显示出前所未有的光电流密度约为4.0 mA⸳cm-2,最大功率密度约为1.1 mW⸳cm-2。正如电化学阻抗谱所观察到的那样,这些条件可以改善电荷转移动力学并降低复合速率。然后,将优化后的Ta3N5光电极以PEC-PV方式与钙钛矿太阳能电池配对,以在KOH溶液中溶解的亚铁氰化物(K4Fe(CN)6)和蒽醌-2,7-二磺酸盐(2,7- aqds)氧化还原对为基础,进行了100小时的碱性SRFC操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unlocking the potential of semi-transparent Ta3N5 photoelectrodes for high-performance, reproducible solar redox flow cells†

Unlocking the potential of semi-transparent Ta3N5 photoelectrodes for high-performance, reproducible solar redox flow cells†

A solar redox flow cell (SRFC) converts solar energy into storable electrochemical energy and heat; when connected to a redox flow battery, it can produce dispatchable electricity. Despite its versatility, a SRFC is still considered to be at a low technology readiness level (TRL), mainly due to the absence of abundant, efficient, and stable semiconductors. Tantalum nitride (Ta3N5) photoelectrodes have garnered special interest for photoelectrochemical water-splitting applications, particularly those using opaque Ta substrates. However, for SRFCs, which are normally based on coloured electrolytes, Ta3N5 needs to be semi-transparent to allow backside sunlight illumination. Herein, for the first time, the electrophoretic deposition technique was optimized for synthesizing semi-transparent Ta3N5. The best-performing bare photoelectrodes were prepared over a 30 nm Ta-doped TiO2 (TTO) underlayer, and with an electrophoretic time of 7 min and an annealing temperature of 425 °C in an NH3 atmosphere, displaying an unprecedented photocurrent density of ca. 4.0 mA cm−2, and a maximum power density of ca. 1.1 mW cm−2, using a ferrocyanide-based electrolyte. These conditions allowed improving the charge-transfer kinetics and reducing the recombination rates, as observed by electrochemical impedance spectroscopy analysis. The optimized Ta3N5 photoelectrode was paired with a perovskite solar cell, demonstrating ca. 100 h of operation in an aqueous alkaline electrolyte, based on ferrocyanide (K4Fe(CN)6) and anthraquinone-2,7-disulphonate (2,7-AQDS) redox pairs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信