Daniel Sinausia, Noam Zisser, Dr. Thierry Kilian Slot, Dr. David Eisenberg, Dr. Florian Meirer, Dr. Charlotte Vogt
{"title":"解码Cu上CO2电还原的双层动力学","authors":"Daniel Sinausia, Noam Zisser, Dr. Thierry Kilian Slot, Dr. David Eisenberg, Dr. Florian Meirer, Dr. Charlotte Vogt","doi":"10.1002/anie.202423177","DOIUrl":null,"url":null,"abstract":"<p>Understanding the nature and role of the electric double layer (EDL) at electrocatalytic interfaces and its dynamic evolution, is critical to optimizing electrochemical processes such as the carbon dioxide reduction reaction (<span></span><math></math>). Despite its postulated significant influence on <span></span><math></math> activity, direct spectroscopic evidence of the complex interplay between EDL structure and reaction kinetics has remained elusive. Here, we introduce Dynamic Response Spectroscopy (DRS), a novel approach that isolates spectroscopic signatures of key physicochemical features of the EDL, including the compact (interfacial) layer and the diffuse double layer based on their time-variance profiles. By analyzing multi-dimensional time-variance within a matrix of time-resolved infrared spectral data recorded during sequential potential steps, we reveal that EDL equilibration is not continuous but involves discrete restructuring events. We provide spectroscopic evidence that these sudden EDL reorganizations correlate with the rapid adsorption and conversion of <span></span><math></math> to CO. Furthermore, we show that saturation of aqueous NaHCO<sub>3</sub> electrolytes with <span></span><math></math>, as opposed to Ar, induces more frequent and pronounced water reorientation in the diffuse double layer, characterized by less ice-like ordering and increased randomness. These findings provide novel insights into the dynamic nature of the EDL and its synergistic role in electrocatalysis, establishing a paradigm to better understand, and thus optimize, electrochemical systems.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 26","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202423177","citationCount":"0","resultStr":"{\"title\":\"Decoding Double Layer Dynamics for Electroreduction over Cu\",\"authors\":\"Daniel Sinausia, Noam Zisser, Dr. Thierry Kilian Slot, Dr. David Eisenberg, Dr. Florian Meirer, Dr. Charlotte Vogt\",\"doi\":\"10.1002/anie.202423177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Understanding the nature and role of the electric double layer (EDL) at electrocatalytic interfaces and its dynamic evolution, is critical to optimizing electrochemical processes such as the carbon dioxide reduction reaction (<span></span><math></math>). Despite its postulated significant influence on <span></span><math></math> activity, direct spectroscopic evidence of the complex interplay between EDL structure and reaction kinetics has remained elusive. Here, we introduce Dynamic Response Spectroscopy (DRS), a novel approach that isolates spectroscopic signatures of key physicochemical features of the EDL, including the compact (interfacial) layer and the diffuse double layer based on their time-variance profiles. By analyzing multi-dimensional time-variance within a matrix of time-resolved infrared spectral data recorded during sequential potential steps, we reveal that EDL equilibration is not continuous but involves discrete restructuring events. We provide spectroscopic evidence that these sudden EDL reorganizations correlate with the rapid adsorption and conversion of <span></span><math></math> to CO. Furthermore, we show that saturation of aqueous NaHCO<sub>3</sub> electrolytes with <span></span><math></math>, as opposed to Ar, induces more frequent and pronounced water reorientation in the diffuse double layer, characterized by less ice-like ordering and increased randomness. These findings provide novel insights into the dynamic nature of the EDL and its synergistic role in electrocatalysis, establishing a paradigm to better understand, and thus optimize, electrochemical systems.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 26\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202423177\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202423177\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202423177","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Decoding Double Layer Dynamics for Electroreduction over Cu
Understanding the nature and role of the electric double layer (EDL) at electrocatalytic interfaces and its dynamic evolution, is critical to optimizing electrochemical processes such as the carbon dioxide reduction reaction (). Despite its postulated significant influence on activity, direct spectroscopic evidence of the complex interplay between EDL structure and reaction kinetics has remained elusive. Here, we introduce Dynamic Response Spectroscopy (DRS), a novel approach that isolates spectroscopic signatures of key physicochemical features of the EDL, including the compact (interfacial) layer and the diffuse double layer based on their time-variance profiles. By analyzing multi-dimensional time-variance within a matrix of time-resolved infrared spectral data recorded during sequential potential steps, we reveal that EDL equilibration is not continuous but involves discrete restructuring events. We provide spectroscopic evidence that these sudden EDL reorganizations correlate with the rapid adsorption and conversion of to CO. Furthermore, we show that saturation of aqueous NaHCO3 electrolytes with , as opposed to Ar, induces more frequent and pronounced water reorientation in the diffuse double layer, characterized by less ice-like ordering and increased randomness. These findings provide novel insights into the dynamic nature of the EDL and its synergistic role in electrocatalysis, establishing a paradigm to better understand, and thus optimize, electrochemical systems.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.