na2co3活化高炉炉渣与有机配体的反应动力学:电导率测量的见解

IF 10.8 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Julson Aymard Tchio , Elijah Adesanya , Rafal Sliz , Brant Walkley , Juho Yliniemi
{"title":"na2co3活化高炉炉渣与有机配体的反应动力学:电导率测量的见解","authors":"Julson Aymard Tchio ,&nbsp;Elijah Adesanya ,&nbsp;Rafal Sliz ,&nbsp;Brant Walkley ,&nbsp;Juho Yliniemi","doi":"10.1016/j.cemconcomp.2025.106021","DOIUrl":null,"url":null,"abstract":"<div><div>Electrical conductivity measurement using impedance spectroscopy could be a valuable technique for monitoring the various reaction processes of cementitious materials and predicting their long-term durability. In this study, alternating current impedance spectroscopy was employed to investigate the influence of two ligands, 2,3-dihydroxynaphthalene and 3,4-dihydroxybenzoic acid with a 0.1 wt% dosage, on the hardening process of four types of blast furnace slag (BFS) activated with sodium carbonate solution. The objectives of the study were to investigate whether impedance spectroscopy could be used for estimating the reactivity of BFS and monitoring the reaction kinetics of this type of binder as well as evaluating the correlation between electrical conductivity and reaction heat, pore solution chemistry, setting time, flowability and compressive strength. The results demonstrated that both ligands accelerated the hardening process and increased compressive strength, which was confirmed by the various techniques used. The measured electrical conductivities varied among BFS pastes due to differences in their pore solution composition and microstructure and correlated with compressive strength evolution. The results demonstrated that impedance spectroscopy is sensitive enough to detect differences in conductivity due to differences in the reactivity of BFS and the effect of low a dosage of ligands in the binder. However, because of the overall complexity of reactions in this type of binder, responses in electrical conductivity do not show systematic trends.</div></div>","PeriodicalId":9865,"journal":{"name":"Cement & concrete composites","volume":"160 ","pages":"Article 106021"},"PeriodicalIF":10.8000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reaction kinetics of Na2CO3-activated blast furnace slag with organic ligands: Insights from electrical conductivity measurements\",\"authors\":\"Julson Aymard Tchio ,&nbsp;Elijah Adesanya ,&nbsp;Rafal Sliz ,&nbsp;Brant Walkley ,&nbsp;Juho Yliniemi\",\"doi\":\"10.1016/j.cemconcomp.2025.106021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Electrical conductivity measurement using impedance spectroscopy could be a valuable technique for monitoring the various reaction processes of cementitious materials and predicting their long-term durability. In this study, alternating current impedance spectroscopy was employed to investigate the influence of two ligands, 2,3-dihydroxynaphthalene and 3,4-dihydroxybenzoic acid with a 0.1 wt% dosage, on the hardening process of four types of blast furnace slag (BFS) activated with sodium carbonate solution. The objectives of the study were to investigate whether impedance spectroscopy could be used for estimating the reactivity of BFS and monitoring the reaction kinetics of this type of binder as well as evaluating the correlation between electrical conductivity and reaction heat, pore solution chemistry, setting time, flowability and compressive strength. The results demonstrated that both ligands accelerated the hardening process and increased compressive strength, which was confirmed by the various techniques used. The measured electrical conductivities varied among BFS pastes due to differences in their pore solution composition and microstructure and correlated with compressive strength evolution. The results demonstrated that impedance spectroscopy is sensitive enough to detect differences in conductivity due to differences in the reactivity of BFS and the effect of low a dosage of ligands in the binder. However, because of the overall complexity of reactions in this type of binder, responses in electrical conductivity do not show systematic trends.</div></div>\",\"PeriodicalId\":9865,\"journal\":{\"name\":\"Cement & concrete composites\",\"volume\":\"160 \",\"pages\":\"Article 106021\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement & concrete composites\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0958946525001039\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement & concrete composites","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958946525001039","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

利用阻抗谱法测量电导率对于监测胶凝材料的各种反应过程和预测其长期耐久性是一种有价值的技术。本研究采用交流阻抗谱法研究了2,3-二羟基萘和3,4-二羟基苯甲酸两种配体(用量为0.1 wt.%)对碳酸钠溶液活化的4种高炉渣(BFS)硬化过程的影响。该研究的目的是研究阻抗谱是否可以用于估计BFS的反应性和监测这类粘合剂的反应动力学,以及评估电导率与反应热、孔溶液化学、凝结时间、流动性和抗压强度之间的相关性。结果表明,这两种配体加速了硬化过程,增加了抗压强度,这是由各种技术所证实的。不同BFS膏体的电导率随其孔隙溶液组成和微观结构的不同而变化,并与抗压强度变化有关。结果表明,阻抗谱足够灵敏,可以检测到由于BFS的反应性差异和粘合剂中低剂量配体的影响而导致的电导率差异。然而,由于这类粘合剂反应的总体复杂性,电导率的反应没有显示出系统的趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reaction kinetics of Na2CO3-activated blast furnace slag with organic ligands: Insights from electrical conductivity measurements
Electrical conductivity measurement using impedance spectroscopy could be a valuable technique for monitoring the various reaction processes of cementitious materials and predicting their long-term durability. In this study, alternating current impedance spectroscopy was employed to investigate the influence of two ligands, 2,3-dihydroxynaphthalene and 3,4-dihydroxybenzoic acid with a 0.1 wt% dosage, on the hardening process of four types of blast furnace slag (BFS) activated with sodium carbonate solution. The objectives of the study were to investigate whether impedance spectroscopy could be used for estimating the reactivity of BFS and monitoring the reaction kinetics of this type of binder as well as evaluating the correlation between electrical conductivity and reaction heat, pore solution chemistry, setting time, flowability and compressive strength. The results demonstrated that both ligands accelerated the hardening process and increased compressive strength, which was confirmed by the various techniques used. The measured electrical conductivities varied among BFS pastes due to differences in their pore solution composition and microstructure and correlated with compressive strength evolution. The results demonstrated that impedance spectroscopy is sensitive enough to detect differences in conductivity due to differences in the reactivity of BFS and the effect of low a dosage of ligands in the binder. However, because of the overall complexity of reactions in this type of binder, responses in electrical conductivity do not show systematic trends.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cement & concrete composites
Cement & concrete composites 工程技术-材料科学:复合
CiteScore
18.70
自引率
11.40%
发文量
459
审稿时长
65 days
期刊介绍: Cement & concrete composites focuses on advancements in cement-concrete composite technology and the production, use, and performance of cement-based construction materials. It covers a wide range of materials, including fiber-reinforced composites, polymer composites, ferrocement, and those incorporating special aggregates or waste materials. Major themes include microstructure, material properties, testing, durability, mechanics, modeling, design, fabrication, and practical applications. The journal welcomes papers on structural behavior, field studies, repair and maintenance, serviceability, and sustainability. It aims to enhance understanding, provide a platform for unconventional materials, promote low-cost energy-saving materials, and bridge the gap between materials science, engineering, and construction. Special issues on emerging topics are also published to encourage collaboration between materials scientists, engineers, designers, and fabricators.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信