Dan Zhang, Sanyuan Tang, Junyu Chen, Fangyuan Liu, Kangxu Zhao, Lu Kang, Chao Li, Ran Xia, Fang Yang, Feifei Yu, Cheng-Guo Duan, Peng Xie, Qi Xie
{"title":"DG1启动子染色体反转驱动重粒小穗,提高高粱籽粒产量","authors":"Dan Zhang, Sanyuan Tang, Junyu Chen, Fangyuan Liu, Kangxu Zhao, Lu Kang, Chao Li, Ran Xia, Fang Yang, Feifei Yu, Cheng-Guo Duan, Peng Xie, Qi Xie","doi":"10.1038/s41477-025-01937-7","DOIUrl":null,"url":null,"abstract":"The phenomenon of multiple-grain spikelets is frequently observed in gramineous crops. In the case of dual-floret spikelets, the upper fertile floret develops normally to form a single grain, while the lower sterile floret undergoes abortion. Here we elucidate the role of Double-Grain 1 (DG1), a gene encoding a homeobox-domain-containing protein, in regulating the lower floret meristem activity and double-grain spikelet trait in sorghum. A 35.7-kb paracentric inversion in the DG1 promoter region leads to increased DG1 expression, probably by reducing repressive histone modifications. This increase in DG1 expression transforms the degenerated lower floret into a fertile one. The use of the superior DG1 allele results in an increase of approximately 40.7% to 46.1% in grain number per panicle and a 10.1% to 14.3% increase in overall grain yield. Our findings shed light on the sorghum double-grain spikelet characteristic, offering valuable insights for high-yield breeding designs in cereals. A 35.7-kb inversion in the DG1 promoter increased DG1 expression in sorghum, inducing double-grain spikelets by restoring fertility to the lower floret. The superior DG1 allele boosted grain number and yield, providing insights for high-yield breeding.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"11 3","pages":"453-467"},"PeriodicalIF":15.8000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chromosomal inversion at the DG1 promoter drives double-grain spikelets and enhances grain yield in sorghum\",\"authors\":\"Dan Zhang, Sanyuan Tang, Junyu Chen, Fangyuan Liu, Kangxu Zhao, Lu Kang, Chao Li, Ran Xia, Fang Yang, Feifei Yu, Cheng-Guo Duan, Peng Xie, Qi Xie\",\"doi\":\"10.1038/s41477-025-01937-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The phenomenon of multiple-grain spikelets is frequently observed in gramineous crops. In the case of dual-floret spikelets, the upper fertile floret develops normally to form a single grain, while the lower sterile floret undergoes abortion. Here we elucidate the role of Double-Grain 1 (DG1), a gene encoding a homeobox-domain-containing protein, in regulating the lower floret meristem activity and double-grain spikelet trait in sorghum. A 35.7-kb paracentric inversion in the DG1 promoter region leads to increased DG1 expression, probably by reducing repressive histone modifications. This increase in DG1 expression transforms the degenerated lower floret into a fertile one. The use of the superior DG1 allele results in an increase of approximately 40.7% to 46.1% in grain number per panicle and a 10.1% to 14.3% increase in overall grain yield. Our findings shed light on the sorghum double-grain spikelet characteristic, offering valuable insights for high-yield breeding designs in cereals. A 35.7-kb inversion in the DG1 promoter increased DG1 expression in sorghum, inducing double-grain spikelets by restoring fertility to the lower floret. The superior DG1 allele boosted grain number and yield, providing insights for high-yield breeding.\",\"PeriodicalId\":18904,\"journal\":{\"name\":\"Nature Plants\",\"volume\":\"11 3\",\"pages\":\"453-467\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Plants\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41477-025-01937-7\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Plants","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41477-025-01937-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Chromosomal inversion at the DG1 promoter drives double-grain spikelets and enhances grain yield in sorghum
The phenomenon of multiple-grain spikelets is frequently observed in gramineous crops. In the case of dual-floret spikelets, the upper fertile floret develops normally to form a single grain, while the lower sterile floret undergoes abortion. Here we elucidate the role of Double-Grain 1 (DG1), a gene encoding a homeobox-domain-containing protein, in regulating the lower floret meristem activity and double-grain spikelet trait in sorghum. A 35.7-kb paracentric inversion in the DG1 promoter region leads to increased DG1 expression, probably by reducing repressive histone modifications. This increase in DG1 expression transforms the degenerated lower floret into a fertile one. The use of the superior DG1 allele results in an increase of approximately 40.7% to 46.1% in grain number per panicle and a 10.1% to 14.3% increase in overall grain yield. Our findings shed light on the sorghum double-grain spikelet characteristic, offering valuable insights for high-yield breeding designs in cereals. A 35.7-kb inversion in the DG1 promoter increased DG1 expression in sorghum, inducing double-grain spikelets by restoring fertility to the lower floret. The superior DG1 allele boosted grain number and yield, providing insights for high-yield breeding.
期刊介绍:
Nature Plants is an online-only, monthly journal publishing the best research on plants — from their evolution, development, metabolism and environmental interactions to their societal significance.