Ruiwen Yang, Yanlong Yang, Tengfei Wu, Yang Zhang, Dan Dan, Junwei Min, Xianghua Yu, Taiqiang Dai, Liang Kong, Li Li, Baoli Yao
{"title":"基于图像的干涉聚焦传感在双光子显微镜中的波前校正","authors":"Ruiwen Yang, Yanlong Yang, Tengfei Wu, Yang Zhang, Dan Dan, Junwei Min, Xianghua Yu, Taiqiang Dai, Liang Kong, Li Li, Baoli Yao","doi":"10.1515/nanoph-2024-0738","DOIUrl":null,"url":null,"abstract":"Adaptive optics is a technology that corrects wavefront distortions to enhance image quality. Interferometric focus sensing (IFS), a relatively recently proposed method within the field of adaptive optics, has demonstrated effectiveness in correcting complex aberrations in deep tissue imaging. This approach determines the correction pattern based on a single location within the sample. In this paper, we propose an image-based interferometric focus sensing (IBIFS) method in a conjugate adaptive optics configuration that progressively estimates and corrects the wavefront over the entire field of view by monitoring the feedback of image quality metrics. The sample conjugate configuration allows for the correction of multiple points across the full field of view by sequentially measuring the correction pattern for each point. We experimentally demonstrate our method on both the fluorescent beads and the mouse brain slices using a custom-built two-photon microscope. We show that our approach has a large effective field of view as well as more stable optimization results compared to the region of interest based method.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"40 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wavefront correction with image-based interferometric focus sensing in two-photon microscopy\",\"authors\":\"Ruiwen Yang, Yanlong Yang, Tengfei Wu, Yang Zhang, Dan Dan, Junwei Min, Xianghua Yu, Taiqiang Dai, Liang Kong, Li Li, Baoli Yao\",\"doi\":\"10.1515/nanoph-2024-0738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adaptive optics is a technology that corrects wavefront distortions to enhance image quality. Interferometric focus sensing (IFS), a relatively recently proposed method within the field of adaptive optics, has demonstrated effectiveness in correcting complex aberrations in deep tissue imaging. This approach determines the correction pattern based on a single location within the sample. In this paper, we propose an image-based interferometric focus sensing (IBIFS) method in a conjugate adaptive optics configuration that progressively estimates and corrects the wavefront over the entire field of view by monitoring the feedback of image quality metrics. The sample conjugate configuration allows for the correction of multiple points across the full field of view by sequentially measuring the correction pattern for each point. We experimentally demonstrate our method on both the fluorescent beads and the mouse brain slices using a custom-built two-photon microscope. We show that our approach has a large effective field of view as well as more stable optimization results compared to the region of interest based method.\",\"PeriodicalId\":19027,\"journal\":{\"name\":\"Nanophotonics\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/nanoph-2024-0738\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0738","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Wavefront correction with image-based interferometric focus sensing in two-photon microscopy
Adaptive optics is a technology that corrects wavefront distortions to enhance image quality. Interferometric focus sensing (IFS), a relatively recently proposed method within the field of adaptive optics, has demonstrated effectiveness in correcting complex aberrations in deep tissue imaging. This approach determines the correction pattern based on a single location within the sample. In this paper, we propose an image-based interferometric focus sensing (IBIFS) method in a conjugate adaptive optics configuration that progressively estimates and corrects the wavefront over the entire field of view by monitoring the feedback of image quality metrics. The sample conjugate configuration allows for the correction of multiple points across the full field of view by sequentially measuring the correction pattern for each point. We experimentally demonstrate our method on both the fluorescent beads and the mouse brain slices using a custom-built two-photon microscope. We show that our approach has a large effective field of view as well as more stable optimization results compared to the region of interest based method.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.