通过电子能量损失光谱研究集体电荷激发

IF 14.3 1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER
Peter Abbamonte, Jörg Fink
{"title":"通过电子能量损失光谱研究集体电荷激发","authors":"Peter Abbamonte, Jörg Fink","doi":"10.1146/annurev-conmatphys-032822-044125","DOIUrl":null,"url":null,"abstract":"The dynamic charge susceptibility, χ(<jats:italic>q</jats:italic>, ω), is a fundamental observable of all materials, in one, two, and three dimensions, quantifying the collective charge modes and the ability of a material to screen charge, as well as its electronic compressibility. Here, we review the current state of efforts to measure the charge susceptibility of quantum materials using inelastic electron scattering, which historically has been called electron energy-loss spectroscopy (EELS). We focus on comparison between transmission (T-EELS) and reflection (R-EELS) geometries as applied to a selection of three-dimensional and quasi-two-dimensional conductors. Although a great deal is understood about simple metals, measurements of more strongly interacting and strange metals are currently conflicting, with different groups obtaining fundamentally contradictory results, emphasizing the importance of improved EELS measurements. Furthermore, current opportunities for improvement in EELS techniques are vast, with the most promising future development being in hemispherical and time-of-flight analyzers, as well as scanning transmission electron microscope instruments configured for high-momentum resolution. We conclude that, despite more than half a century of work, EELS techniques are currently still in their infancy.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":"14 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collective Charge Excitations Studied by Electron Energy-Loss Spectroscopy\",\"authors\":\"Peter Abbamonte, Jörg Fink\",\"doi\":\"10.1146/annurev-conmatphys-032822-044125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamic charge susceptibility, χ(<jats:italic>q</jats:italic>, ω), is a fundamental observable of all materials, in one, two, and three dimensions, quantifying the collective charge modes and the ability of a material to screen charge, as well as its electronic compressibility. Here, we review the current state of efforts to measure the charge susceptibility of quantum materials using inelastic electron scattering, which historically has been called electron energy-loss spectroscopy (EELS). We focus on comparison between transmission (T-EELS) and reflection (R-EELS) geometries as applied to a selection of three-dimensional and quasi-two-dimensional conductors. Although a great deal is understood about simple metals, measurements of more strongly interacting and strange metals are currently conflicting, with different groups obtaining fundamentally contradictory results, emphasizing the importance of improved EELS measurements. Furthermore, current opportunities for improvement in EELS techniques are vast, with the most promising future development being in hemispherical and time-of-flight analyzers, as well as scanning transmission electron microscope instruments configured for high-momentum resolution. We conclude that, despite more than half a century of work, EELS techniques are currently still in their infancy.\",\"PeriodicalId\":7925,\"journal\":{\"name\":\"Annual Review of Condensed Matter Physics\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Condensed Matter Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-conmatphys-032822-044125\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-conmatphys-032822-044125","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

动态电荷磁化率χ(q, ω)是所有材料在一维、二维和三维上的基本观测值,它量化了集体电荷模式和材料屏蔽电荷的能力,以及它的电子压缩性。在这里,我们回顾了使用非弹性电子散射来测量量子材料的电荷磁化率的现状,这种方法在历史上被称为电子能量损失谱(EELS)。我们重点比较了透射(T-EELS)和反射(R-EELS)几何形状在三维和准二维导体中的应用。虽然对简单金属的了解很多,但目前对相互作用更强的金属和奇怪金属的测量存在冲突,不同的研究小组得到了根本矛盾的结果,这强调了改进EELS测量的重要性。此外,目前EELS技术的改进机会是巨大的,最有希望的未来发展是半球形和飞行时间分析仪,以及配置为高动量分辨率的扫描透射电子显微镜仪器。我们的结论是,尽管经过了半个多世纪的努力,EELS技术目前仍处于起步阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Collective Charge Excitations Studied by Electron Energy-Loss Spectroscopy
The dynamic charge susceptibility, χ(q, ω), is a fundamental observable of all materials, in one, two, and three dimensions, quantifying the collective charge modes and the ability of a material to screen charge, as well as its electronic compressibility. Here, we review the current state of efforts to measure the charge susceptibility of quantum materials using inelastic electron scattering, which historically has been called electron energy-loss spectroscopy (EELS). We focus on comparison between transmission (T-EELS) and reflection (R-EELS) geometries as applied to a selection of three-dimensional and quasi-two-dimensional conductors. Although a great deal is understood about simple metals, measurements of more strongly interacting and strange metals are currently conflicting, with different groups obtaining fundamentally contradictory results, emphasizing the importance of improved EELS measurements. Furthermore, current opportunities for improvement in EELS techniques are vast, with the most promising future development being in hemispherical and time-of-flight analyzers, as well as scanning transmission electron microscope instruments configured for high-momentum resolution. We conclude that, despite more than half a century of work, EELS techniques are currently still in their infancy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Review of Condensed Matter Physics
Annual Review of Condensed Matter Physics PHYSICS, CONDENSED MATTER-
CiteScore
47.40
自引率
0.90%
发文量
27
期刊介绍: Since its inception in 2010, the Annual Review of Condensed Matter Physics has been chronicling significant advancements in the field and its related subjects. By highlighting recent developments and offering critical evaluations, the journal actively contributes to the ongoing discourse in condensed matter physics. The latest volume of the journal has transitioned from gated access to open access, facilitated by Annual Reviews' Subscribe to Open initiative. Under this program, all articles are now published under a CC BY license, ensuring broader accessibility and dissemination of knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信