{"title":"量子场论对物质中微子味道振荡的处理","authors":"Maxim Dvornikov","doi":"10.1103/physrevd.111.056009","DOIUrl":null,"url":null,"abstract":"We study neutrino oscillations in background matter within the quantum field theory formalism where neutrino mass eigenstates are virtual particles. In this case, neutrino mass eigenstates are mixed owing to the interaction with matter. Assuming that neutrinos are Majorana particles, we find the exact propagators for massive neutrinos accounting for the interaction with matter by solving the analog of the Dyson equation. These propagators are used to calculate the transition probability, which coincides with the prediction of the standard quantum-mechanical treatment of neutrino flavor oscillations in uniform matter. Finally, we analyze the approximations made in our analysis. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"23 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum field theory treatment of neutrino flavor oscillations in matter\",\"authors\":\"Maxim Dvornikov\",\"doi\":\"10.1103/physrevd.111.056009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study neutrino oscillations in background matter within the quantum field theory formalism where neutrino mass eigenstates are virtual particles. In this case, neutrino mass eigenstates are mixed owing to the interaction with matter. Assuming that neutrinos are Majorana particles, we find the exact propagators for massive neutrinos accounting for the interaction with matter by solving the analog of the Dyson equation. These propagators are used to calculate the transition probability, which coincides with the prediction of the standard quantum-mechanical treatment of neutrino flavor oscillations in uniform matter. Finally, we analyze the approximations made in our analysis. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.056009\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.056009","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Quantum field theory treatment of neutrino flavor oscillations in matter
We study neutrino oscillations in background matter within the quantum field theory formalism where neutrino mass eigenstates are virtual particles. In this case, neutrino mass eigenstates are mixed owing to the interaction with matter. Assuming that neutrinos are Majorana particles, we find the exact propagators for massive neutrinos accounting for the interaction with matter by solving the analog of the Dyson equation. These propagators are used to calculate the transition probability, which coincides with the prediction of the standard quantum-mechanical treatment of neutrino flavor oscillations in uniform matter. Finally, we analyze the approximations made in our analysis. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.