Julien Froustey, James P. Kneller, Gail C. McLaughlin
{"title":"小味道相干的量子最大熵闭合","authors":"Julien Froustey, James P. Kneller, Gail C. McLaughlin","doi":"10.1103/physrevd.111.063022","DOIUrl":null,"url":null,"abstract":"Quantum angular moment transport schemes are an important avenue toward describing neutrino flavor mixing phenomena in dense astrophysical environments such as supernovae and merging neutron stars. Successful implementation will require new closure relations that go beyond those used in classical transport. In this paper, we derive the first analytic expression for a quantum M1 closure, valid in the limit of small flavor coherence, based on the maximum entropy principle. We verify that the resulting closure relation has the appropriate limits and characteristic speeds in the diffusive and free-streaming regimes. We then use this new closure in a moment linear stability analysis to search for fast flavor instabilities in a binary neutron star merger simulation and find better results as compared with previously designed, , semiclassical closures. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"31 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum maximum entropy closure for small flavor coherence\",\"authors\":\"Julien Froustey, James P. Kneller, Gail C. McLaughlin\",\"doi\":\"10.1103/physrevd.111.063022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum angular moment transport schemes are an important avenue toward describing neutrino flavor mixing phenomena in dense astrophysical environments such as supernovae and merging neutron stars. Successful implementation will require new closure relations that go beyond those used in classical transport. In this paper, we derive the first analytic expression for a quantum M1 closure, valid in the limit of small flavor coherence, based on the maximum entropy principle. We verify that the resulting closure relation has the appropriate limits and characteristic speeds in the diffusive and free-streaming regimes. We then use this new closure in a moment linear stability analysis to search for fast flavor instabilities in a binary neutron star merger simulation and find better results as compared with previously designed, , semiclassical closures. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.063022\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.063022","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Quantum maximum entropy closure for small flavor coherence
Quantum angular moment transport schemes are an important avenue toward describing neutrino flavor mixing phenomena in dense astrophysical environments such as supernovae and merging neutron stars. Successful implementation will require new closure relations that go beyond those used in classical transport. In this paper, we derive the first analytic expression for a quantum M1 closure, valid in the limit of small flavor coherence, based on the maximum entropy principle. We verify that the resulting closure relation has the appropriate limits and characteristic speeds in the diffusive and free-streaming regimes. We then use this new closure in a moment linear stability analysis to search for fast flavor instabilities in a binary neutron star merger simulation and find better results as compared with previously designed, , semiclassical closures. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.