S. Wajhal, S.K. Mishra, A.B. Shinde, P.S.R. Krishna, V.B. Jayakrishnan, P.U. Sastry, R. Mittal
{"title":"通过(Ba0.7Ca0.3)TiO3取代NaNbO3的工程室温铁电性:高温下结构和铁电性的结合研究","authors":"S. Wajhal, S.K. Mishra, A.B. Shinde, P.S.R. Krishna, V.B. Jayakrishnan, P.U. Sastry, R. Mittal","doi":"10.1016/j.jallcom.2025.179658","DOIUrl":null,"url":null,"abstract":"Sodium niobate, a promising material for energy storage, has been transformed into a room-temperature ferroelectric phase through a well known crystal engineering technique. This involved strategically substituting atoms within the crystal structure (A and B sites) to induce chemical pressure. The resulting material exhibits enhanced polarization strength at elevated temperatures, with the underlying mechanism linked to atomic displacements and octahedral rotation or distortions within the crystal lattice. This connection between structure and properties is further supported by the good agreement between computed polarization values and experimental data. Interestingly, the research also unveils the material's temperature-dependent phase transitions, transitioning from a ferroelectric phase at room temperature (P<em>mc2</em><sub><em>1</em></sub>) to a high-symmetry paraelectric phase (<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\" is=\"true\">P</mi><mi is=\"true\">m</mi><mover accent=\"true\" is=\"true\"><mrow is=\"true\"><mn is=\"true\">3</mn></mrow><mo is=\"true\">&#x305;</mo></mover><mi is=\"true\">m</mi></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.317ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -896.2 2939 997.6\" width=\"6.826ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-50\"></use></g><g is=\"true\" transform=\"translate(681,0)\"><use xlink:href=\"#MJMATHI-6D\"></use></g><g is=\"true\" transform=\"translate(1560,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-33\"></use></g></g><g is=\"true\" transform=\"translate(29,188)\"><text font-family=\"STIXGeneral,'Arial Unicode MS',serif\" stroke=\"none\" transform=\"scale(55.199) matrix(1 0 0 -1 0 0)\">̅</text></g></g><g is=\"true\" transform=\"translate(2060,0)\"><use xlink:href=\"#MJMATHI-6D\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\" mathvariant=\"normal\">P</mi><mi is=\"true\">m</mi><mover accent=\"true\" is=\"true\"><mrow is=\"true\"><mn is=\"true\">3</mn></mrow><mo is=\"true\">̅</mo></mover><mi is=\"true\">m</mi></math></span></span><script type=\"math/mml\"><math><mi mathvariant=\"normal\" is=\"true\">P</mi><mi is=\"true\">m</mi><mover accent=\"true\" is=\"true\"><mrow is=\"true\"><mn is=\"true\">3</mn></mrow><mo is=\"true\">̅</mo></mover><mi is=\"true\">m</mi></math></script></span>) as temperatures increase. This work opens exciting possibilities for developing novel energy storage devices utilizing this engineered ferroelectric material.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"86 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering Room-Temperature Ferroelectricity in NaNbO3 via (Ba0.7Ca0.3)TiO3 substitution: A Combined Structural and Ferroelectric Investigation at Elevated Temperatures\",\"authors\":\"S. Wajhal, S.K. Mishra, A.B. Shinde, P.S.R. Krishna, V.B. Jayakrishnan, P.U. Sastry, R. Mittal\",\"doi\":\"10.1016/j.jallcom.2025.179658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sodium niobate, a promising material for energy storage, has been transformed into a room-temperature ferroelectric phase through a well known crystal engineering technique. This involved strategically substituting atoms within the crystal structure (A and B sites) to induce chemical pressure. The resulting material exhibits enhanced polarization strength at elevated temperatures, with the underlying mechanism linked to atomic displacements and octahedral rotation or distortions within the crystal lattice. This connection between structure and properties is further supported by the good agreement between computed polarization values and experimental data. Interestingly, the research also unveils the material's temperature-dependent phase transitions, transitioning from a ferroelectric phase at room temperature (P<em>mc2</em><sub><em>1</em></sub>) to a high-symmetry paraelectric phase (<span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">P</mi><mi is=\\\"true\\\">m</mi><mover accent=\\\"true\\\" is=\\\"true\\\"><mrow is=\\\"true\\\"><mn is=\\\"true\\\">3</mn></mrow><mo is=\\\"true\\\">&#x305;</mo></mover><mi is=\\\"true\\\">m</mi></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.317ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.235ex;\\\" viewbox=\\\"0 -896.2 2939 997.6\\\" width=\\\"6.826ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-50\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(681,0)\\\"><use xlink:href=\\\"#MJMATHI-6D\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(1560,0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-33\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(29,188)\\\"><text font-family=\\\"STIXGeneral,'Arial Unicode MS',serif\\\" stroke=\\\"none\\\" transform=\\\"scale(55.199) matrix(1 0 0 -1 0 0)\\\">̅</text></g></g><g is=\\\"true\\\" transform=\\\"translate(2060,0)\\\"><use xlink:href=\\\"#MJMATHI-6D\\\"></use></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">P</mi><mi is=\\\"true\\\">m</mi><mover accent=\\\"true\\\" is=\\\"true\\\"><mrow is=\\\"true\\\"><mn is=\\\"true\\\">3</mn></mrow><mo is=\\\"true\\\">̅</mo></mover><mi is=\\\"true\\\">m</mi></math></span></span><script type=\\\"math/mml\\\"><math><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">P</mi><mi is=\\\"true\\\">m</mi><mover accent=\\\"true\\\" is=\\\"true\\\"><mrow is=\\\"true\\\"><mn is=\\\"true\\\">3</mn></mrow><mo is=\\\"true\\\">̅</mo></mover><mi is=\\\"true\\\">m</mi></math></script></span>) as temperatures increase. This work opens exciting possibilities for developing novel energy storage devices utilizing this engineered ferroelectric material.\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jallcom.2025.179658\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2025.179658","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Engineering Room-Temperature Ferroelectricity in NaNbO3 via (Ba0.7Ca0.3)TiO3 substitution: A Combined Structural and Ferroelectric Investigation at Elevated Temperatures
Sodium niobate, a promising material for energy storage, has been transformed into a room-temperature ferroelectric phase through a well known crystal engineering technique. This involved strategically substituting atoms within the crystal structure (A and B sites) to induce chemical pressure. The resulting material exhibits enhanced polarization strength at elevated temperatures, with the underlying mechanism linked to atomic displacements and octahedral rotation or distortions within the crystal lattice. This connection between structure and properties is further supported by the good agreement between computed polarization values and experimental data. Interestingly, the research also unveils the material's temperature-dependent phase transitions, transitioning from a ferroelectric phase at room temperature (Pmc21) to a high-symmetry paraelectric phase () as temperatures increase. This work opens exciting possibilities for developing novel energy storage devices utilizing this engineered ferroelectric material.
期刊介绍:
The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.