通过(Ba0.7Ca0.3)TiO3取代NaNbO3的工程室温铁电性:高温下结构和铁电性的结合研究

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
S. Wajhal, S.K. Mishra, A.B. Shinde, P.S.R. Krishna, V.B. Jayakrishnan, P.U. Sastry, R. Mittal
{"title":"通过(Ba0.7Ca0.3)TiO3取代NaNbO3的工程室温铁电性:高温下结构和铁电性的结合研究","authors":"S. Wajhal, S.K. Mishra, A.B. Shinde, P.S.R. Krishna, V.B. Jayakrishnan, P.U. Sastry, R. Mittal","doi":"10.1016/j.jallcom.2025.179658","DOIUrl":null,"url":null,"abstract":"Sodium niobate, a promising material for energy storage, has been transformed into a room-temperature ferroelectric phase through a well known crystal engineering technique. This involved strategically substituting atoms within the crystal structure (A and B sites) to induce chemical pressure. The resulting material exhibits enhanced polarization strength at elevated temperatures, with the underlying mechanism linked to atomic displacements and octahedral rotation or distortions within the crystal lattice. This connection between structure and properties is further supported by the good agreement between computed polarization values and experimental data. Interestingly, the research also unveils the material's temperature-dependent phase transitions, transitioning from a ferroelectric phase at room temperature (P<em>mc2</em><sub><em>1</em></sub>) to a high-symmetry paraelectric phase (<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;P&lt;/mi&gt;&lt;mi is=\"true\"&gt;m&lt;/mi&gt;&lt;mover accent=\"true\" is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;mo is=\"true\"&gt;&amp;#x305;&lt;/mo&gt;&lt;/mover&gt;&lt;mi is=\"true\"&gt;m&lt;/mi&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.317ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -896.2 2939 997.6\" width=\"6.826ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-50\"></use></g><g is=\"true\" transform=\"translate(681,0)\"><use xlink:href=\"#MJMATHI-6D\"></use></g><g is=\"true\" transform=\"translate(1560,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-33\"></use></g></g><g is=\"true\" transform=\"translate(29,188)\"><text font-family=\"STIXGeneral,'Arial Unicode MS',serif\" stroke=\"none\" transform=\"scale(55.199) matrix(1 0 0 -1 0 0)\">̅</text></g></g><g is=\"true\" transform=\"translate(2060,0)\"><use xlink:href=\"#MJMATHI-6D\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\" mathvariant=\"normal\">P</mi><mi is=\"true\">m</mi><mover accent=\"true\" is=\"true\"><mrow is=\"true\"><mn is=\"true\">3</mn></mrow><mo is=\"true\">̅</mo></mover><mi is=\"true\">m</mi></math></span></span><script type=\"math/mml\"><math><mi mathvariant=\"normal\" is=\"true\">P</mi><mi is=\"true\">m</mi><mover accent=\"true\" is=\"true\"><mrow is=\"true\"><mn is=\"true\">3</mn></mrow><mo is=\"true\">̅</mo></mover><mi is=\"true\">m</mi></math></script></span>) as temperatures increase. This work opens exciting possibilities for developing novel energy storage devices utilizing this engineered ferroelectric material.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"86 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering Room-Temperature Ferroelectricity in NaNbO3 via (Ba0.7Ca0.3)TiO3 substitution: A Combined Structural and Ferroelectric Investigation at Elevated Temperatures\",\"authors\":\"S. Wajhal, S.K. Mishra, A.B. Shinde, P.S.R. Krishna, V.B. Jayakrishnan, P.U. Sastry, R. Mittal\",\"doi\":\"10.1016/j.jallcom.2025.179658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sodium niobate, a promising material for energy storage, has been transformed into a room-temperature ferroelectric phase through a well known crystal engineering technique. This involved strategically substituting atoms within the crystal structure (A and B sites) to induce chemical pressure. The resulting material exhibits enhanced polarization strength at elevated temperatures, with the underlying mechanism linked to atomic displacements and octahedral rotation or distortions within the crystal lattice. This connection between structure and properties is further supported by the good agreement between computed polarization values and experimental data. Interestingly, the research also unveils the material's temperature-dependent phase transitions, transitioning from a ferroelectric phase at room temperature (P<em>mc2</em><sub><em>1</em></sub>) to a high-symmetry paraelectric phase (<span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mi mathvariant=\\\"normal\\\" is=\\\"true\\\"&gt;P&lt;/mi&gt;&lt;mi is=\\\"true\\\"&gt;m&lt;/mi&gt;&lt;mover accent=\\\"true\\\" is=\\\"true\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mn is=\\\"true\\\"&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;mo is=\\\"true\\\"&gt;&amp;#x305;&lt;/mo&gt;&lt;/mover&gt;&lt;mi is=\\\"true\\\"&gt;m&lt;/mi&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.317ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.235ex;\\\" viewbox=\\\"0 -896.2 2939 997.6\\\" width=\\\"6.826ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-50\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(681,0)\\\"><use xlink:href=\\\"#MJMATHI-6D\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(1560,0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-33\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(29,188)\\\"><text font-family=\\\"STIXGeneral,'Arial Unicode MS',serif\\\" stroke=\\\"none\\\" transform=\\\"scale(55.199) matrix(1 0 0 -1 0 0)\\\">̅</text></g></g><g is=\\\"true\\\" transform=\\\"translate(2060,0)\\\"><use xlink:href=\\\"#MJMATHI-6D\\\"></use></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">P</mi><mi is=\\\"true\\\">m</mi><mover accent=\\\"true\\\" is=\\\"true\\\"><mrow is=\\\"true\\\"><mn is=\\\"true\\\">3</mn></mrow><mo is=\\\"true\\\">̅</mo></mover><mi is=\\\"true\\\">m</mi></math></span></span><script type=\\\"math/mml\\\"><math><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">P</mi><mi is=\\\"true\\\">m</mi><mover accent=\\\"true\\\" is=\\\"true\\\"><mrow is=\\\"true\\\"><mn is=\\\"true\\\">3</mn></mrow><mo is=\\\"true\\\">̅</mo></mover><mi is=\\\"true\\\">m</mi></math></script></span>) as temperatures increase. This work opens exciting possibilities for developing novel energy storage devices utilizing this engineered ferroelectric material.\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jallcom.2025.179658\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2025.179658","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

铌酸钠是一种很有前途的储能材料,通过一种众所周知的晶体工程技术,铌酸钠已经转变为室温铁电相。这涉及到战略性地取代晶体结构中的原子(A和B位)来诱导化学压力。所得材料在高温下表现出增强的极化强度,其潜在机制与晶格内的原子位移和八面体旋转或扭曲有关。计算的极化值与实验数据吻合良好,进一步证实了这种结构与性能之间的联系。有趣的是,该研究还揭示了材料的温度依赖相变,随着温度的升高,从室温下的铁电相(Pmc21)转变为高对称性的准电相(_ Pm3 _ mPm3 _ m)。这项工作为利用这种工程铁电材料开发新型储能装置提供了令人兴奋的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Engineering Room-Temperature Ferroelectricity in NaNbO3 via (Ba0.7Ca0.3)TiO3 substitution: A Combined Structural and Ferroelectric Investigation at Elevated Temperatures

Engineering Room-Temperature Ferroelectricity in NaNbO3 via (Ba0.7Ca0.3)TiO3 substitution: A Combined Structural and Ferroelectric Investigation at Elevated Temperatures
Sodium niobate, a promising material for energy storage, has been transformed into a room-temperature ferroelectric phase through a well known crystal engineering technique. This involved strategically substituting atoms within the crystal structure (A and B sites) to induce chemical pressure. The resulting material exhibits enhanced polarization strength at elevated temperatures, with the underlying mechanism linked to atomic displacements and octahedral rotation or distortions within the crystal lattice. This connection between structure and properties is further supported by the good agreement between computed polarization values and experimental data. Interestingly, the research also unveils the material's temperature-dependent phase transitions, transitioning from a ferroelectric phase at room temperature (Pmc21) to a high-symmetry paraelectric phase (Pm3̅m) as temperatures increase. This work opens exciting possibilities for developing novel energy storage devices utilizing this engineered ferroelectric material.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信