肝脏 Niemann-Pick C1-like 1 的潜在功能:管状脂质双层膜的胆固醇平衡调节。

IF 3.8 3区 医学 Q2 GASTROENTEROLOGY & HEPATOLOGY
Gastroenterology Report Pub Date : 2025-03-07 eCollection Date: 2025-01-01 DOI:10.1093/gastro/goaf010
Hongtan Chen, Pingfan Mo, Guoqiang Xu
{"title":"肝脏 Niemann-Pick C1-like 1 的潜在功能:管状脂质双层膜的胆固醇平衡调节。","authors":"Hongtan Chen, Pingfan Mo, Guoqiang Xu","doi":"10.1093/gastro/goaf010","DOIUrl":null,"url":null,"abstract":"<p><p>Niemann-Pick C1-like 1 (NPC1L1) is distributed in the human liver and intestine but only slightly expressed in the mouse liver. While it is well established that intestinal NPC1L1 is crucial for the absorption of exogenous cholesterol, the physiological and pathological roles of canalicular membrane-localized NPC1L1 in human hepatic cholesterol transport remain unclear. In this review, we discussed the potential function of human hepatic NPC1L1 and proposed that the disparity in NPC1L1 abundance between humans and mice in the liver may be attributable to their distinct bile hydrophobicity. Human hepatic NPC1L1 might interact with other proteins in the canalicular membrane, regulate membrane cholesterol homeostasis, and contribute to the stability of the canalicular lipid bilayer membrane in response to the greater detergent properties of human bile salts. We hoped to provide novel perspectives on hepatic NPC1L1 for future investigations.</p>","PeriodicalId":54275,"journal":{"name":"Gastroenterology Report","volume":"13 ","pages":"goaf010"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889457/pdf/","citationCount":"0","resultStr":"{\"title\":\"Potential function of hepatic Niemann-Pick C1-like 1: cholesterol homeostasis regulation of the canalicular lipid bilayer membrane.\",\"authors\":\"Hongtan Chen, Pingfan Mo, Guoqiang Xu\",\"doi\":\"10.1093/gastro/goaf010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Niemann-Pick C1-like 1 (NPC1L1) is distributed in the human liver and intestine but only slightly expressed in the mouse liver. While it is well established that intestinal NPC1L1 is crucial for the absorption of exogenous cholesterol, the physiological and pathological roles of canalicular membrane-localized NPC1L1 in human hepatic cholesterol transport remain unclear. In this review, we discussed the potential function of human hepatic NPC1L1 and proposed that the disparity in NPC1L1 abundance between humans and mice in the liver may be attributable to their distinct bile hydrophobicity. Human hepatic NPC1L1 might interact with other proteins in the canalicular membrane, regulate membrane cholesterol homeostasis, and contribute to the stability of the canalicular lipid bilayer membrane in response to the greater detergent properties of human bile salts. We hoped to provide novel perspectives on hepatic NPC1L1 for future investigations.</p>\",\"PeriodicalId\":54275,\"journal\":{\"name\":\"Gastroenterology Report\",\"volume\":\"13 \",\"pages\":\"goaf010\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889457/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gastroenterology Report\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/gastro/goaf010\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gastroenterology Report","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/gastro/goaf010","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Potential function of hepatic Niemann-Pick C1-like 1: cholesterol homeostasis regulation of the canalicular lipid bilayer membrane.

Niemann-Pick C1-like 1 (NPC1L1) is distributed in the human liver and intestine but only slightly expressed in the mouse liver. While it is well established that intestinal NPC1L1 is crucial for the absorption of exogenous cholesterol, the physiological and pathological roles of canalicular membrane-localized NPC1L1 in human hepatic cholesterol transport remain unclear. In this review, we discussed the potential function of human hepatic NPC1L1 and proposed that the disparity in NPC1L1 abundance between humans and mice in the liver may be attributable to their distinct bile hydrophobicity. Human hepatic NPC1L1 might interact with other proteins in the canalicular membrane, regulate membrane cholesterol homeostasis, and contribute to the stability of the canalicular lipid bilayer membrane in response to the greater detergent properties of human bile salts. We hoped to provide novel perspectives on hepatic NPC1L1 for future investigations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Gastroenterology Report
Gastroenterology Report Medicine-Gastroenterology
CiteScore
4.60
自引率
2.80%
发文量
63
审稿时长
8 weeks
期刊介绍: Gastroenterology Report is an international fully open access (OA) online only journal, covering all areas related to gastrointestinal sciences, including studies of the alimentary tract, liver, biliary, pancreas, enteral nutrition and related fields. The journal aims to publish high quality research articles on both basic and clinical gastroenterology, authoritative reviews that bring together new advances in the field, as well as commentaries and highlight pieces that provide expert analysis of topical issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信