产前唐氏综合征筛查中机器学习和生物标志物整合的进展。

IF 1 Q4 OBSTETRICS & GYNECOLOGY
Mahsa Danaei, Heewa Rashnavadi, Maryam Yeganegi, Seyed Alireza Dastgheib, Reza Bahrami, Sepideh Azizi, Fatemeh Jayervand, Ali Masoudi, Amirhossein Shahbazi, Amirmasoud Shiri, Kazem Aghili, Mahta Mazaheri, Hossein Neamatzadeh
{"title":"产前唐氏综合征筛查中机器学习和生物标志物整合的进展。","authors":"Mahsa Danaei, Heewa Rashnavadi, Maryam Yeganegi, Seyed Alireza Dastgheib, Reza Bahrami, Sepideh Azizi, Fatemeh Jayervand, Ali Masoudi, Amirhossein Shahbazi, Amirmasoud Shiri, Kazem Aghili, Mahta Mazaheri, Hossein Neamatzadeh","doi":"10.4274/tjod.galenos.2025.12689","DOIUrl":null,"url":null,"abstract":"<p><p>The use of machine learning (ML) in biomarker analysis for predicting Down syndrome exemplifies an innovative strategy that enhances diagnostic accuracy and enables early detection. Recent studies demonstrate the effectiveness of ML algorithms in identifying genetic variations and expression patterns associated with Down syndrome by comparing genomic data from affected individuals and their typically developing peers. This review examines how ML and biomarker analysis improve prenatal screening for Down syndrome. Advancements show that integrating maternal serum markers, nuchal translucency measurements, and ultrasonographic images with algorithms, such as random forests and deep learning convolutional neural networks, raises detection rates to above 85% while keeping false positive rates low. Moreover, non-invasive prenatal testing with soft ultrasound markers has increased diagnostic sensitivity and specificity, marking a significant shift in prenatal care. The review highlights the importance of implementing robust screening protocols that utilize ultrasound biomarkers, along with developing personalized screening tools through advanced statistical methods. It also explores the potential of combining genetic and epigenetic biomarkers with ML to further improve diagnostic accuracy and understanding of Down syndrome pathophysiology. The findings stress the need for ongoing research to optimize algorithms, validate their effectiveness across diverse populations, and incorporate these cutting-edge approaches into routine clinical practice. Ultimately, blending advanced imaging techniques with ML shows promise for enhancing prenatal care outcomes and aiding informed decision-making for expectant parents.</p>","PeriodicalId":45340,"journal":{"name":"Turkish Journal of Obstetrics and Gynecology","volume":"22 1","pages":"75-82"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11894766/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advancements in machine learning and biomarker integration for prenatal Down syndrome screening.\",\"authors\":\"Mahsa Danaei, Heewa Rashnavadi, Maryam Yeganegi, Seyed Alireza Dastgheib, Reza Bahrami, Sepideh Azizi, Fatemeh Jayervand, Ali Masoudi, Amirhossein Shahbazi, Amirmasoud Shiri, Kazem Aghili, Mahta Mazaheri, Hossein Neamatzadeh\",\"doi\":\"10.4274/tjod.galenos.2025.12689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of machine learning (ML) in biomarker analysis for predicting Down syndrome exemplifies an innovative strategy that enhances diagnostic accuracy and enables early detection. Recent studies demonstrate the effectiveness of ML algorithms in identifying genetic variations and expression patterns associated with Down syndrome by comparing genomic data from affected individuals and their typically developing peers. This review examines how ML and biomarker analysis improve prenatal screening for Down syndrome. Advancements show that integrating maternal serum markers, nuchal translucency measurements, and ultrasonographic images with algorithms, such as random forests and deep learning convolutional neural networks, raises detection rates to above 85% while keeping false positive rates low. Moreover, non-invasive prenatal testing with soft ultrasound markers has increased diagnostic sensitivity and specificity, marking a significant shift in prenatal care. The review highlights the importance of implementing robust screening protocols that utilize ultrasound biomarkers, along with developing personalized screening tools through advanced statistical methods. It also explores the potential of combining genetic and epigenetic biomarkers with ML to further improve diagnostic accuracy and understanding of Down syndrome pathophysiology. The findings stress the need for ongoing research to optimize algorithms, validate their effectiveness across diverse populations, and incorporate these cutting-edge approaches into routine clinical practice. Ultimately, blending advanced imaging techniques with ML shows promise for enhancing prenatal care outcomes and aiding informed decision-making for expectant parents.</p>\",\"PeriodicalId\":45340,\"journal\":{\"name\":\"Turkish Journal of Obstetrics and Gynecology\",\"volume\":\"22 1\",\"pages\":\"75-82\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11894766/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Obstetrics and Gynecology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4274/tjod.galenos.2025.12689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OBSTETRICS & GYNECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Obstetrics and Gynecology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4274/tjod.galenos.2025.12689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在生物标志物分析中使用机器学习(ML)来预测唐氏综合症,这是一种创新策略,可以提高诊断准确性并实现早期发现。最近的研究表明,通过比较受影响个体和正常发育同伴的基因组数据,ML算法在识别与唐氏综合征相关的遗传变异和表达模式方面是有效的。本文综述了ML和生物标志物分析如何改善唐氏综合征的产前筛查。研究进展表明,将母体血清标记物、颈部透明度测量和超声图像与随机森林和深度学习卷积神经网络等算法相结合,可以将检测率提高到85%以上,同时保持低假阳性率。此外,使用软超声标记的无创产前检查增加了诊断的敏感性和特异性,标志着产前护理的重大转变。该综述强调了利用超声生物标志物实施稳健筛查方案的重要性,以及通过先进的统计方法开发个性化筛查工具的重要性。它还探索了将遗传和表观遗传生物标志物与ML相结合的潜力,以进一步提高诊断准确性和对唐氏综合征病理生理学的理解。研究结果强调需要进行持续的研究来优化算法,验证其在不同人群中的有效性,并将这些前沿方法纳入常规临床实践。最终,将先进的成像技术与ML相结合,有望提高产前护理结果,并帮助准父母做出明智的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancements in machine learning and biomarker integration for prenatal Down syndrome screening.

The use of machine learning (ML) in biomarker analysis for predicting Down syndrome exemplifies an innovative strategy that enhances diagnostic accuracy and enables early detection. Recent studies demonstrate the effectiveness of ML algorithms in identifying genetic variations and expression patterns associated with Down syndrome by comparing genomic data from affected individuals and their typically developing peers. This review examines how ML and biomarker analysis improve prenatal screening for Down syndrome. Advancements show that integrating maternal serum markers, nuchal translucency measurements, and ultrasonographic images with algorithms, such as random forests and deep learning convolutional neural networks, raises detection rates to above 85% while keeping false positive rates low. Moreover, non-invasive prenatal testing with soft ultrasound markers has increased diagnostic sensitivity and specificity, marking a significant shift in prenatal care. The review highlights the importance of implementing robust screening protocols that utilize ultrasound biomarkers, along with developing personalized screening tools through advanced statistical methods. It also explores the potential of combining genetic and epigenetic biomarkers with ML to further improve diagnostic accuracy and understanding of Down syndrome pathophysiology. The findings stress the need for ongoing research to optimize algorithms, validate their effectiveness across diverse populations, and incorporate these cutting-edge approaches into routine clinical practice. Ultimately, blending advanced imaging techniques with ML shows promise for enhancing prenatal care outcomes and aiding informed decision-making for expectant parents.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信