转录组学分析显示NDRV感染引起的脾坏死鸭铁下垂。

IF 3.7 1区 农林科学 Q1 VETERINARY SCIENCES
Hongzhi Wang, Chenchen Jiang, Boyi Xu, Di Lei, Rendong Fang, Yi Tang
{"title":"转录组学分析显示NDRV感染引起的脾坏死鸭铁下垂。","authors":"Hongzhi Wang, Chenchen Jiang, Boyi Xu, Di Lei, Rendong Fang, Yi Tang","doi":"10.1186/s13567-025-01479-y","DOIUrl":null,"url":null,"abstract":"<p><p>Infection with novel duck reovirus (NDRV) results in severe splenic necrosis, leading to immunosuppression, secondary infections with other pathogens, and impairment of the immune effect of the vaccine. However, little is known about NDRV-induced spleen injury and its antagonistic mechanism on the host immune response. In this study, we conducted pathological and comparative transcriptomic analyses of NDRV-infected duck spleens. Our findings elucidated the histopathological progression of splenic necrotic foci formation following NDRV infection and identified splenic macrophages as the primary target cells. RNA-Seq analysis revealed differentially expressed genes that were enriched predominantly in immune system processes, signalling molecules and interactions, and pathways related to cell growth and necrosis. Notably, we observed a significant upregulation of ferroptosis during NDRV infection, characterized by the induction of specific metabolism-related genes such as TfR1, Hmox1, and STEAP3, alongside the downregulation of Fpn expression. Our findings collectively indicate the involvement of ferroptosis in spleen injury induced by NDRV infection. Investigating the mechanism of NDRV-induced ferroptosis in spleen macrophages will contribute to a comprehensive understanding of the pathogenesis associated with NDRV.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":"56 1","pages":"54"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11892222/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transcriptomic analysis revealed ferroptosis in ducklings with splenic necrosis induced by NDRV infection.\",\"authors\":\"Hongzhi Wang, Chenchen Jiang, Boyi Xu, Di Lei, Rendong Fang, Yi Tang\",\"doi\":\"10.1186/s13567-025-01479-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Infection with novel duck reovirus (NDRV) results in severe splenic necrosis, leading to immunosuppression, secondary infections with other pathogens, and impairment of the immune effect of the vaccine. However, little is known about NDRV-induced spleen injury and its antagonistic mechanism on the host immune response. In this study, we conducted pathological and comparative transcriptomic analyses of NDRV-infected duck spleens. Our findings elucidated the histopathological progression of splenic necrotic foci formation following NDRV infection and identified splenic macrophages as the primary target cells. RNA-Seq analysis revealed differentially expressed genes that were enriched predominantly in immune system processes, signalling molecules and interactions, and pathways related to cell growth and necrosis. Notably, we observed a significant upregulation of ferroptosis during NDRV infection, characterized by the induction of specific metabolism-related genes such as TfR1, Hmox1, and STEAP3, alongside the downregulation of Fpn expression. Our findings collectively indicate the involvement of ferroptosis in spleen injury induced by NDRV infection. Investigating the mechanism of NDRV-induced ferroptosis in spleen macrophages will contribute to a comprehensive understanding of the pathogenesis associated with NDRV.</p>\",\"PeriodicalId\":23658,\"journal\":{\"name\":\"Veterinary Research\",\"volume\":\"56 1\",\"pages\":\"54\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11892222/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Veterinary Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1186/s13567-025-01479-y\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s13567-025-01479-y","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

新型鸭呼肠孤病毒(NDRV)感染会导致严重的脾坏死,导致免疫抑制,继发感染其他病原体,并损害疫苗的免疫效果。然而,ndrv诱导的脾脏损伤及其对宿主免疫应答的拮抗机制尚不清楚。在本研究中,我们对ndrv感染的鸭脾脏进行了病理和比较转录组学分析。我们的研究结果阐明了NDRV感染后脾坏死灶形成的组织病理学进展,并确定了脾巨噬细胞是主要靶细胞。RNA-Seq分析显示,差异表达的基因主要富集在免疫系统过程、信号分子和相互作用以及与细胞生长和坏死相关的途径中。值得注意的是,在NDRV感染期间,我们观察到铁凋亡的显著上调,其特征是TfR1、Hmox1和STEAP3等特定代谢相关基因的诱导,以及Fpn表达的下调。我们的研究结果表明,铁下垂参与了NDRV感染引起的脾脏损伤。研究NDRV诱导脾巨噬细胞铁下垂的机制将有助于全面了解NDRV相关的发病机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transcriptomic analysis revealed ferroptosis in ducklings with splenic necrosis induced by NDRV infection.

Infection with novel duck reovirus (NDRV) results in severe splenic necrosis, leading to immunosuppression, secondary infections with other pathogens, and impairment of the immune effect of the vaccine. However, little is known about NDRV-induced spleen injury and its antagonistic mechanism on the host immune response. In this study, we conducted pathological and comparative transcriptomic analyses of NDRV-infected duck spleens. Our findings elucidated the histopathological progression of splenic necrotic foci formation following NDRV infection and identified splenic macrophages as the primary target cells. RNA-Seq analysis revealed differentially expressed genes that were enriched predominantly in immune system processes, signalling molecules and interactions, and pathways related to cell growth and necrosis. Notably, we observed a significant upregulation of ferroptosis during NDRV infection, characterized by the induction of specific metabolism-related genes such as TfR1, Hmox1, and STEAP3, alongside the downregulation of Fpn expression. Our findings collectively indicate the involvement of ferroptosis in spleen injury induced by NDRV infection. Investigating the mechanism of NDRV-induced ferroptosis in spleen macrophages will contribute to a comprehensive understanding of the pathogenesis associated with NDRV.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Veterinary Research
Veterinary Research 农林科学-兽医学
CiteScore
7.00
自引率
4.50%
发文量
92
审稿时长
3 months
期刊介绍: Veterinary Research is an open access journal that publishes high quality and novel research and review articles focusing on all aspects of infectious diseases and host-pathogen interaction in animals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信