重组抗菌蛋白PIL22-PBD-2在毕赤酵母中的表达及体外生物学功能验证

IF 3.7 1区 农林科学 Q1 VETERINARY SCIENCES
Xian Li, Pengfei Qiu, Menglong Yue, Ying Zhang, Congshang Lei, Jingyu Wang, Xiwen Chen, Xuefeng Qi
{"title":"重组抗菌蛋白PIL22-PBD-2在毕赤酵母中的表达及体外生物学功能验证","authors":"Xian Li, Pengfei Qiu, Menglong Yue, Ying Zhang, Congshang Lei, Jingyu Wang, Xiwen Chen, Xuefeng Qi","doi":"10.1186/s13567-024-01428-1","DOIUrl":null,"url":null,"abstract":"<p><p>Finding suitable alternatives to antibiotics as feed additives is challenging for the livestock industry. Porcine beta-defensin 2 (PBD-2) is an endogenous antimicrobial peptide produced by pigs. Due to its broad-spectrum antibacterial activity against various microorganisms and its low tendency for drug resistance, it is considered a potential substitute for antibiotics. Additionally, given its strong ability to repair intestinal epithelial damage and maintain intestinal mucosal barrier function, porcine interleukin-22 (PIL-22) is a potential feed additive to combat intestinal damage caused by intestinal pathogens in piglets. In this study, the amino acid sequences of PBD-2 and PIL-22 were combined to express the fusion protein in Pichia pastoris, and its biological activity was evaluated in vitro. Our results showed that the PIL22-PBD-2 exhibits broad-spectrum antibacterial activity against multidrug-resistant enterotoxigenic Escherichia coli O8 (ETEC O8), Escherichia coli (E. coli), Salmonella typhimurium, and Staphylococcus aureus (S. aureus). PIL22-PBD-2 demonstrated wound repair capability through a healing assay in the intestinal porcine epithelial cell line-J2 (IPEC-J2). Furthermore, PIL22-PBD-2 significantly enhanced the expression of the major intercellular junction-associated proteins ZO-1 and E-cadherin in IPEC-J2. It is important to note that PIL22-PBD-2 reduced intestinal epithelial cell apoptosis (p < 0.05) considerably and decreased bacterial adhesion (p < 0.05) in ETEC O8-challenged IPEC-J2. We also found that the PIL22-PBD-2 treatment attenuated ETEC O8-induced inflammatory responses in IPEC-J2 by exerting antibacterial activity, increasing the expression of endogenous antimicrobial peptides, and significantly decreasing the mRNA expression levels of IL-6 and TNF-α (p < 0.05). In conclusion, our studies demonstrate that PIL22-PBD-2 has a positive effect on inhibiting pathogenic bacteria and repairing intestinal damage.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":"56 1","pages":"52"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889930/pdf/","citationCount":"0","resultStr":"{\"title\":\"Expression of recombination antimicrobial protein PIL22-PBD-2 in Pichia pastoris and verification of its biological function in vitro.\",\"authors\":\"Xian Li, Pengfei Qiu, Menglong Yue, Ying Zhang, Congshang Lei, Jingyu Wang, Xiwen Chen, Xuefeng Qi\",\"doi\":\"10.1186/s13567-024-01428-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Finding suitable alternatives to antibiotics as feed additives is challenging for the livestock industry. Porcine beta-defensin 2 (PBD-2) is an endogenous antimicrobial peptide produced by pigs. Due to its broad-spectrum antibacterial activity against various microorganisms and its low tendency for drug resistance, it is considered a potential substitute for antibiotics. Additionally, given its strong ability to repair intestinal epithelial damage and maintain intestinal mucosal barrier function, porcine interleukin-22 (PIL-22) is a potential feed additive to combat intestinal damage caused by intestinal pathogens in piglets. In this study, the amino acid sequences of PBD-2 and PIL-22 were combined to express the fusion protein in Pichia pastoris, and its biological activity was evaluated in vitro. Our results showed that the PIL22-PBD-2 exhibits broad-spectrum antibacterial activity against multidrug-resistant enterotoxigenic Escherichia coli O8 (ETEC O8), Escherichia coli (E. coli), Salmonella typhimurium, and Staphylococcus aureus (S. aureus). PIL22-PBD-2 demonstrated wound repair capability through a healing assay in the intestinal porcine epithelial cell line-J2 (IPEC-J2). Furthermore, PIL22-PBD-2 significantly enhanced the expression of the major intercellular junction-associated proteins ZO-1 and E-cadherin in IPEC-J2. It is important to note that PIL22-PBD-2 reduced intestinal epithelial cell apoptosis (p < 0.05) considerably and decreased bacterial adhesion (p < 0.05) in ETEC O8-challenged IPEC-J2. We also found that the PIL22-PBD-2 treatment attenuated ETEC O8-induced inflammatory responses in IPEC-J2 by exerting antibacterial activity, increasing the expression of endogenous antimicrobial peptides, and significantly decreasing the mRNA expression levels of IL-6 and TNF-α (p < 0.05). In conclusion, our studies demonstrate that PIL22-PBD-2 has a positive effect on inhibiting pathogenic bacteria and repairing intestinal damage.</p>\",\"PeriodicalId\":23658,\"journal\":{\"name\":\"Veterinary Research\",\"volume\":\"56 1\",\"pages\":\"52\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889930/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Veterinary Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1186/s13567-024-01428-1\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s13567-024-01428-1","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

寻找合适的抗生素替代品作为饲料添加剂对畜牧业来说是一个挑战。猪β -防御素2 (PBD-2)是猪产生的一种内源性抗菌肽。由于其对多种微生物的广谱抗菌活性和低耐药倾向,被认为是抗生素的潜在替代品。此外,鉴于猪白细胞介素-22 (PIL-22)具有较强的修复肠上皮损伤和维持肠黏膜屏障功能的能力,它是一种潜在的饲料添加剂,可用于对抗仔猪肠道病原体引起的肠道损伤。本研究将PBD-2和PIL-22的氨基酸序列组合在毕氏酵母中表达融合蛋白,并对其体外生物活性进行了评价。结果表明,PIL22-PBD-2对多重耐药产肠毒素大肠杆菌O8 (ETEC O8)、大肠杆菌(E. coli)、鼠伤寒沙门氏菌和金黄色葡萄球菌(S. aureus)具有广谱抗菌活性。通过猪肠上皮细胞系j2 (IPEC-J2)的愈合试验,PIL22-PBD-2显示出伤口修复能力。此外,PIL22-PBD-2显著增强了IPEC-J2中主要细胞间连接相关蛋白ZO-1和E-cadherin的表达。值得注意的是,PIL22-PBD-2减少了肠上皮细胞的凋亡(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Expression of recombination antimicrobial protein PIL22-PBD-2 in Pichia pastoris and verification of its biological function in vitro.

Finding suitable alternatives to antibiotics as feed additives is challenging for the livestock industry. Porcine beta-defensin 2 (PBD-2) is an endogenous antimicrobial peptide produced by pigs. Due to its broad-spectrum antibacterial activity against various microorganisms and its low tendency for drug resistance, it is considered a potential substitute for antibiotics. Additionally, given its strong ability to repair intestinal epithelial damage and maintain intestinal mucosal barrier function, porcine interleukin-22 (PIL-22) is a potential feed additive to combat intestinal damage caused by intestinal pathogens in piglets. In this study, the amino acid sequences of PBD-2 and PIL-22 were combined to express the fusion protein in Pichia pastoris, and its biological activity was evaluated in vitro. Our results showed that the PIL22-PBD-2 exhibits broad-spectrum antibacterial activity against multidrug-resistant enterotoxigenic Escherichia coli O8 (ETEC O8), Escherichia coli (E. coli), Salmonella typhimurium, and Staphylococcus aureus (S. aureus). PIL22-PBD-2 demonstrated wound repair capability through a healing assay in the intestinal porcine epithelial cell line-J2 (IPEC-J2). Furthermore, PIL22-PBD-2 significantly enhanced the expression of the major intercellular junction-associated proteins ZO-1 and E-cadherin in IPEC-J2. It is important to note that PIL22-PBD-2 reduced intestinal epithelial cell apoptosis (p < 0.05) considerably and decreased bacterial adhesion (p < 0.05) in ETEC O8-challenged IPEC-J2. We also found that the PIL22-PBD-2 treatment attenuated ETEC O8-induced inflammatory responses in IPEC-J2 by exerting antibacterial activity, increasing the expression of endogenous antimicrobial peptides, and significantly decreasing the mRNA expression levels of IL-6 and TNF-α (p < 0.05). In conclusion, our studies demonstrate that PIL22-PBD-2 has a positive effect on inhibiting pathogenic bacteria and repairing intestinal damage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Veterinary Research
Veterinary Research 农林科学-兽医学
CiteScore
7.00
自引率
4.50%
发文量
92
审稿时长
3 months
期刊介绍: Veterinary Research is an open access journal that publishes high quality and novel research and review articles focusing on all aspects of infectious diseases and host-pathogen interaction in animals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信