小反刍慢病毒gag-P25重组仙台病毒载体的体外抗病毒特性及在羊体内的转基因表达

IF 3.7 1区 农林科学 Q1 VETERINARY SCIENCES
Álex Gómez, Idoia Glaria, Irati Moncayola, Irache Echeverría, Javier Arrizabalaga, Ana Rodríguez-Largo, Ignacio de Blas, Delia Lacasta, Estela Pérez, Marta Pérez, Alicia De Diego, Ricardo De-Miguel, Benhur Lee, Lluís Luján, Ramsés Reina
{"title":"小反刍慢病毒gag-P25重组仙台病毒载体的体外抗病毒特性及在羊体内的转基因表达","authors":"Álex Gómez, Idoia Glaria, Irati Moncayola, Irache Echeverría, Javier Arrizabalaga, Ana Rodríguez-Largo, Ignacio de Blas, Delia Lacasta, Estela Pérez, Marta Pérez, Alicia De Diego, Ricardo De-Miguel, Benhur Lee, Lluís Luján, Ramsés Reina","doi":"10.1186/s13567-025-01475-2","DOIUrl":null,"url":null,"abstract":"<p><p>Small ruminant lentiviruses (SRLV) cause multisystemic chronic inflammatory disease and significant economic losses in sheep and goats worldwide. However, no vaccines or therapies are currently available. In this study, a recombinant Sendai virus (SeV) vector encoding the SRLV gag-P25 gene (rSeV-GFP-P25) from the EV1 strain was generated using In-FUSION cloning and rescued using the SeV reverse genetic system. Transgene expression and stimulation of innate immunity and interferon-stimulated genes (ovine A3Z1, OBST2 and SAMHD1) were evaluated in ovine skin fibroblasts (OSF) transduced with SeV-GFP and rSeV-GFP-P25. Additionally, to characterize the effect of the SRLV restriction in transduced OSF, the SRLV DNA load was quantified at different times post-transduction and post-infection with strain EV1. Using immunohistochemistry and image analysis, transgene expression and tissue distribution of recombinant P25 were studied in two lambs inoculated intranasally, one with rSeV-GFP-P25 and the other with SeV-GFP. rSeV-GFP-P25 induced efficient and transient transgene expression in vitro and in vivo. Furthermore, OSF transduced with rSeV-GFP-P25 presented upregulation of TLR2, TLR3, TLR6, TLR7, RIG-I, MyD88 and IFN-β, whereas SeV-GFP did not induce TLR6 or IFN-β upregulation. Among the interferon-stimulated genes, OBST2 was significantly upregulated after transduction with rSeV-GFP-P25 compared with the empty vector. SRLV restriction gradually increased and persisted after transduction with SeV-GFP and rSeV-GFP-P25, with OSF transduced three times showing cumulative restriction. Forty-eight hours post-inoculation in vivo, marked P25 expression was observed in ciliated epithelial cells and submucosal macrophages/dendritic cells of the nasal mucosa. This study reinforces the important role of the innate immune response in controlling SRLV infection and suggests that rSeV-GFP-P25 is a potential vaccine candidate against SRLV.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":"56 1","pages":"51"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889777/pdf/","citationCount":"0","resultStr":"{\"title\":\"Characterization of a recombinant Sendai virus vector encoding the small ruminant lentivirus gag-P25: antiviral properties in vitro and transgene expression in sheep.\",\"authors\":\"Álex Gómez, Idoia Glaria, Irati Moncayola, Irache Echeverría, Javier Arrizabalaga, Ana Rodríguez-Largo, Ignacio de Blas, Delia Lacasta, Estela Pérez, Marta Pérez, Alicia De Diego, Ricardo De-Miguel, Benhur Lee, Lluís Luján, Ramsés Reina\",\"doi\":\"10.1186/s13567-025-01475-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Small ruminant lentiviruses (SRLV) cause multisystemic chronic inflammatory disease and significant economic losses in sheep and goats worldwide. However, no vaccines or therapies are currently available. In this study, a recombinant Sendai virus (SeV) vector encoding the SRLV gag-P25 gene (rSeV-GFP-P25) from the EV1 strain was generated using In-FUSION cloning and rescued using the SeV reverse genetic system. Transgene expression and stimulation of innate immunity and interferon-stimulated genes (ovine A3Z1, OBST2 and SAMHD1) were evaluated in ovine skin fibroblasts (OSF) transduced with SeV-GFP and rSeV-GFP-P25. Additionally, to characterize the effect of the SRLV restriction in transduced OSF, the SRLV DNA load was quantified at different times post-transduction and post-infection with strain EV1. Using immunohistochemistry and image analysis, transgene expression and tissue distribution of recombinant P25 were studied in two lambs inoculated intranasally, one with rSeV-GFP-P25 and the other with SeV-GFP. rSeV-GFP-P25 induced efficient and transient transgene expression in vitro and in vivo. Furthermore, OSF transduced with rSeV-GFP-P25 presented upregulation of TLR2, TLR3, TLR6, TLR7, RIG-I, MyD88 and IFN-β, whereas SeV-GFP did not induce TLR6 or IFN-β upregulation. Among the interferon-stimulated genes, OBST2 was significantly upregulated after transduction with rSeV-GFP-P25 compared with the empty vector. SRLV restriction gradually increased and persisted after transduction with SeV-GFP and rSeV-GFP-P25, with OSF transduced three times showing cumulative restriction. Forty-eight hours post-inoculation in vivo, marked P25 expression was observed in ciliated epithelial cells and submucosal macrophages/dendritic cells of the nasal mucosa. This study reinforces the important role of the innate immune response in controlling SRLV infection and suggests that rSeV-GFP-P25 is a potential vaccine candidate against SRLV.</p>\",\"PeriodicalId\":23658,\"journal\":{\"name\":\"Veterinary Research\",\"volume\":\"56 1\",\"pages\":\"51\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889777/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Veterinary Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1186/s13567-025-01475-2\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s13567-025-01475-2","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

小反刍慢病毒(SRLV)在全世界绵羊和山羊中引起多系统慢性炎症性疾病和重大经济损失。然而,目前还没有疫苗或治疗方法。本研究利用In- fusion克隆技术从EV1株中获得了编码SRLV gag-P25基因(rSeV-GFP-P25)的重组仙台病毒(SeV)载体,并利用SeV反向遗传系统进行了挽救。研究了SeV-GFP和rSeV-GFP-P25介导的羊皮肤成纤维细胞(OSF)对先天免疫和干扰素刺激基因(A3Z1、OBST2和SAMHD1)的表达和刺激作用。此外,为了表征SRLV限制对转导OSF的影响,在EV1菌株转导后和感染后的不同时间对SRLV DNA负荷进行了量化。采用免疫组织化学和图像分析的方法,研究了重组P25在2只羔羊鼻内接种rSeV-GFP-P25和SeV-GFP的转基因表达和组织分布。rSeV-GFP-P25在体外和体内诱导了高效和瞬时的转基因表达。此外,用rSeV-GFP-P25转导的OSF可上调TLR2、TLR3、TLR6、TLR7、RIG-I、MyD88和IFN-β,而SeV-GFP不诱导TLR6或IFN-β上调。在干扰素刺激的基因中,与空载体相比,用rSeV-GFP-P25转导后,OBST2显著上调。SeV-GFP和rSeV-GFP-P25转导SRLV后,SRLV限制逐渐增加并持续存在,OSF转导三次后出现累积限制。体内接种48 h后,在鼻黏膜纤毛上皮细胞和粘膜下巨噬细胞/树突状细胞中观察到P25的显著表达。本研究强化了先天免疫应答在控制SRLV感染中的重要作用,提示rSeV-GFP-P25是一种潜在的SRLV候选疫苗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of a recombinant Sendai virus vector encoding the small ruminant lentivirus gag-P25: antiviral properties in vitro and transgene expression in sheep.

Small ruminant lentiviruses (SRLV) cause multisystemic chronic inflammatory disease and significant economic losses in sheep and goats worldwide. However, no vaccines or therapies are currently available. In this study, a recombinant Sendai virus (SeV) vector encoding the SRLV gag-P25 gene (rSeV-GFP-P25) from the EV1 strain was generated using In-FUSION cloning and rescued using the SeV reverse genetic system. Transgene expression and stimulation of innate immunity and interferon-stimulated genes (ovine A3Z1, OBST2 and SAMHD1) were evaluated in ovine skin fibroblasts (OSF) transduced with SeV-GFP and rSeV-GFP-P25. Additionally, to characterize the effect of the SRLV restriction in transduced OSF, the SRLV DNA load was quantified at different times post-transduction and post-infection with strain EV1. Using immunohistochemistry and image analysis, transgene expression and tissue distribution of recombinant P25 were studied in two lambs inoculated intranasally, one with rSeV-GFP-P25 and the other with SeV-GFP. rSeV-GFP-P25 induced efficient and transient transgene expression in vitro and in vivo. Furthermore, OSF transduced with rSeV-GFP-P25 presented upregulation of TLR2, TLR3, TLR6, TLR7, RIG-I, MyD88 and IFN-β, whereas SeV-GFP did not induce TLR6 or IFN-β upregulation. Among the interferon-stimulated genes, OBST2 was significantly upregulated after transduction with rSeV-GFP-P25 compared with the empty vector. SRLV restriction gradually increased and persisted after transduction with SeV-GFP and rSeV-GFP-P25, with OSF transduced three times showing cumulative restriction. Forty-eight hours post-inoculation in vivo, marked P25 expression was observed in ciliated epithelial cells and submucosal macrophages/dendritic cells of the nasal mucosa. This study reinforces the important role of the innate immune response in controlling SRLV infection and suggests that rSeV-GFP-P25 is a potential vaccine candidate against SRLV.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Veterinary Research
Veterinary Research 农林科学-兽医学
CiteScore
7.00
自引率
4.50%
发文量
92
审稿时长
3 months
期刊介绍: Veterinary Research is an open access journal that publishes high quality and novel research and review articles focusing on all aspects of infectious diseases and host-pathogen interaction in animals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信