外周去神经支配增强血管再生的小鼠模型。

IF 2.7 4区 医学 Q3 CELL & TISSUE ENGINEERING
Tissue engineering. Part C, Methods Pub Date : 2025-03-01 Epub Date: 2025-03-10 DOI:10.1089/ten.tec.2025.0014
Taylor K Brown, Caitlyn Dang, Aurea Del Carmen, Sara Alharbi, Calvin L Chao, Liqun Xiong, Nikita Wilson John, Aidan Smires, Karen J Ho, Bin Jiang
{"title":"外周去神经支配增强血管再生的小鼠模型。","authors":"Taylor K Brown, Caitlyn Dang, Aurea Del Carmen, Sara Alharbi, Calvin L Chao, Liqun Xiong, Nikita Wilson John, Aidan Smires, Karen J Ho, Bin Jiang","doi":"10.1089/ten.tec.2025.0014","DOIUrl":null,"url":null,"abstract":"<p><p>Sympathetic innervation plays a critical role in regulating vascular function, yet its influence on vascular regeneration and reinnervation following ischemic injury remains poorly understood. This study develops and validates murine models of localized sympathetic denervation using 6-hydroxydopamine (6-OHDA) to enable study of the sympathetic nervous system's impact on vascular systems during tissue repair. Two methods of 6-OHDA administration were employed: a single topical application during open surgery and minimally invasive weekly subcutaneous injections. The topical application model achieved temporary denervation lasting 1 week without causing vascular damage, while the subcutaneous injection model provided sustained denervation for up to 4 weeks with minimal inflammation and no significant changes to vascular architecture. To investigate the effects of denervation in an ischemic context, these models were combined with a hindlimb ischemia model. Ischemia induced persistent denervation in both 6-OHDA-treated and control limbs, with limited sympathetic nerve regeneration observed over 4 weeks. Despite persistent denervation, microvascular density and perfusion recovery in ischemic muscles were comparable between denervated and control groups. This suggests that ischemia governs vascular regeneration independently of sympathetic input. These results demonstrate that localized 6-OHDA administration provides a versatile tool for achieving controlled sympathetic denervation in peripheral arteries. These models provide a novel platform for studying vascular regeneration and reinnervation under both normal and ischemic conditions, offering novel insights into the interactions between neural regulation and vascular repair processes. This work lays the foundation for future research into neural-vascular crosstalk and new possibilities for developing regenerative therapies targeting the autonomic regulation of vascular health.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":"119-129"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mice Models for Peripheral Denervation to Enhance Vascular Regeneration.\",\"authors\":\"Taylor K Brown, Caitlyn Dang, Aurea Del Carmen, Sara Alharbi, Calvin L Chao, Liqun Xiong, Nikita Wilson John, Aidan Smires, Karen J Ho, Bin Jiang\",\"doi\":\"10.1089/ten.tec.2025.0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sympathetic innervation plays a critical role in regulating vascular function, yet its influence on vascular regeneration and reinnervation following ischemic injury remains poorly understood. This study develops and validates murine models of localized sympathetic denervation using 6-hydroxydopamine (6-OHDA) to enable study of the sympathetic nervous system's impact on vascular systems during tissue repair. Two methods of 6-OHDA administration were employed: a single topical application during open surgery and minimally invasive weekly subcutaneous injections. The topical application model achieved temporary denervation lasting 1 week without causing vascular damage, while the subcutaneous injection model provided sustained denervation for up to 4 weeks with minimal inflammation and no significant changes to vascular architecture. To investigate the effects of denervation in an ischemic context, these models were combined with a hindlimb ischemia model. Ischemia induced persistent denervation in both 6-OHDA-treated and control limbs, with limited sympathetic nerve regeneration observed over 4 weeks. Despite persistent denervation, microvascular density and perfusion recovery in ischemic muscles were comparable between denervated and control groups. This suggests that ischemia governs vascular regeneration independently of sympathetic input. These results demonstrate that localized 6-OHDA administration provides a versatile tool for achieving controlled sympathetic denervation in peripheral arteries. These models provide a novel platform for studying vascular regeneration and reinnervation under both normal and ischemic conditions, offering novel insights into the interactions between neural regulation and vascular repair processes. This work lays the foundation for future research into neural-vascular crosstalk and new possibilities for developing regenerative therapies targeting the autonomic regulation of vascular health.</p>\",\"PeriodicalId\":23154,\"journal\":{\"name\":\"Tissue engineering. Part C, Methods\",\"volume\":\" \",\"pages\":\"119-129\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue engineering. Part C, Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.tec.2025.0014\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering. Part C, Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.tec.2025.0014","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

交感神经支配在调节血管功能中起着至关重要的作用,但其对缺血性损伤后血管再生和神经再生的影响尚不清楚。本研究利用6-羟多巴胺(6-OHDA)建立并验证了局部交感神经去神经的小鼠模型,以研究组织修复过程中交感神经系统对血管系统的影响。采用两种给药方法:开放手术时单次局部给药和每周微创皮下注射。局部应用模型实现了持续1周的暂时去神经,没有造成血管损伤,而皮下注射模型提供了长达4周的持续去神经,炎症最小,血管结构没有明显改变。为了研究去神经支配在缺血情况下的作用,我们将这些模型与后肢缺血模型相结合。在6-羟多巴胺治疗组和对照组中,缺血引起的持续失神经支配,在4周内观察到交感神经再生有限。尽管持续去神经支配,缺血肌肉的微血管密度和灌注恢复在去神经支配组和对照组之间是相当的。这表明缺血对血管再生的控制独立于交感神经输入。这些结果表明,局部6-OHDA给药提供了一种实现外周动脉交感神经控制的通用工具。这些模型为研究正常和缺血条件下的血管再生和神经再生提供了一个新的平台,为神经调节和血管修复过程之间的相互作用提供了新的见解。这项工作为未来神经血管串扰的研究奠定了基础,并为开发针对血管健康自主调节的再生疗法提供了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mice Models for Peripheral Denervation to Enhance Vascular Regeneration.

Sympathetic innervation plays a critical role in regulating vascular function, yet its influence on vascular regeneration and reinnervation following ischemic injury remains poorly understood. This study develops and validates murine models of localized sympathetic denervation using 6-hydroxydopamine (6-OHDA) to enable study of the sympathetic nervous system's impact on vascular systems during tissue repair. Two methods of 6-OHDA administration were employed: a single topical application during open surgery and minimally invasive weekly subcutaneous injections. The topical application model achieved temporary denervation lasting 1 week without causing vascular damage, while the subcutaneous injection model provided sustained denervation for up to 4 weeks with minimal inflammation and no significant changes to vascular architecture. To investigate the effects of denervation in an ischemic context, these models were combined with a hindlimb ischemia model. Ischemia induced persistent denervation in both 6-OHDA-treated and control limbs, with limited sympathetic nerve regeneration observed over 4 weeks. Despite persistent denervation, microvascular density and perfusion recovery in ischemic muscles were comparable between denervated and control groups. This suggests that ischemia governs vascular regeneration independently of sympathetic input. These results demonstrate that localized 6-OHDA administration provides a versatile tool for achieving controlled sympathetic denervation in peripheral arteries. These models provide a novel platform for studying vascular regeneration and reinnervation under both normal and ischemic conditions, offering novel insights into the interactions between neural regulation and vascular repair processes. This work lays the foundation for future research into neural-vascular crosstalk and new possibilities for developing regenerative therapies targeting the autonomic regulation of vascular health.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tissue engineering. Part C, Methods
Tissue engineering. Part C, Methods Medicine-Medicine (miscellaneous)
CiteScore
5.10
自引率
3.30%
发文量
136
期刊介绍: Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues. Tissue Engineering Methods (Part C) presents innovative tools and assays in scaffold development, stem cells and biologically active molecules to advance the field and to support clinical translation. Part C publishes monthly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信