借鉴过去:利用种源试验树和种苗建立欧洲山毛榉(Fagus sylvatica L.)离体培养。

IF 4.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Virginia Zahn, Alexander Fendel, Alice-Jeannine Sievers, Matthias Fladung, Tobias Bruegmann
{"title":"借鉴过去:利用种源试验树和种苗建立欧洲山毛榉(Fagus sylvatica L.)离体培养。","authors":"Virginia Zahn, Alexander Fendel, Alice-Jeannine Sievers, Matthias Fladung, Tobias Bruegmann","doi":"10.1186/s13007-025-01350-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>European beech (Fagus sylvatica L.) is distributed across diverse climate conditions throughout Europe. Local adaptations, such as drought tolerance, could become crucial for maintaining beech populations facing climate change. In vitro culture offers a promising tool for preserving and propagating valuable genotypes and provides a basis for biotechnological research, although establishing and propagating recalcitrant beech in vitro is difficult. To the best of our knowledge, this study is the first to use beeches from a provenance trial to establish in vitro cultures, aiming to capture a wide genetic spectrum and investigate provenance-specific suitability for in vitro cultivation. In addition, a high-throughput method using seedlings has been developed to increase the success of establishing in vitro cultures of a provenance.</p><p><strong>Results: </strong>Actively growing shoots from 22 field-grown provenances were obtained for in vitro establishment. After 12 weeks, shoot formation on shoot tips and nodal segments was induced in 13 provenances (57%), with success rates ranging from 3 to 80%, significantly influenced by the provenance and sampling date of the branches. Combining one harvest each in February and May resulted in the highest shoot formation rate (18%). However, after two years, stable micropropagation was achieved for a single genotype. In the second approach, whole shoots or shoot tips from seedlings were used for in vitro establishment, achieving shoot formation rates between 38 and 94%. Bacterial contamination during establishment was controlled through antibiotic application. Using culture medium without phytohormones improved initial leaf flush on shoot tips within the first 8 weeks of in vitro culture. Phytohormone-supplemented media were needed for shoot multiplication and prolonged in vitro culture. Cultures of 25 genotypes were maintained for up to two years. The viability of in vitro shoots was maintained by supplementing the medium with FeNaEDTA, MgSO<sub>4</sub>, and glucose. Some genotypes showed enhanced performance on sugar-free media with increased light intensity, which reduced bacterial outgrowth.</p><p><strong>Conclusion: </strong>With the technical approaches presented here, we provide starting points for the establishment of beech cultures from various types of starting material, as well as for further method improvement for establishment and long-term cultivation.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"21 1","pages":"31"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11887157/pdf/","citationCount":"0","resultStr":"{\"title\":\"Benefiting from the past: establishing in vitro culture of European beech (Fagus sylvatica L.) from provenance trial trees and seedlings.\",\"authors\":\"Virginia Zahn, Alexander Fendel, Alice-Jeannine Sievers, Matthias Fladung, Tobias Bruegmann\",\"doi\":\"10.1186/s13007-025-01350-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>European beech (Fagus sylvatica L.) is distributed across diverse climate conditions throughout Europe. Local adaptations, such as drought tolerance, could become crucial for maintaining beech populations facing climate change. In vitro culture offers a promising tool for preserving and propagating valuable genotypes and provides a basis for biotechnological research, although establishing and propagating recalcitrant beech in vitro is difficult. To the best of our knowledge, this study is the first to use beeches from a provenance trial to establish in vitro cultures, aiming to capture a wide genetic spectrum and investigate provenance-specific suitability for in vitro cultivation. In addition, a high-throughput method using seedlings has been developed to increase the success of establishing in vitro cultures of a provenance.</p><p><strong>Results: </strong>Actively growing shoots from 22 field-grown provenances were obtained for in vitro establishment. After 12 weeks, shoot formation on shoot tips and nodal segments was induced in 13 provenances (57%), with success rates ranging from 3 to 80%, significantly influenced by the provenance and sampling date of the branches. Combining one harvest each in February and May resulted in the highest shoot formation rate (18%). However, after two years, stable micropropagation was achieved for a single genotype. In the second approach, whole shoots or shoot tips from seedlings were used for in vitro establishment, achieving shoot formation rates between 38 and 94%. Bacterial contamination during establishment was controlled through antibiotic application. Using culture medium without phytohormones improved initial leaf flush on shoot tips within the first 8 weeks of in vitro culture. Phytohormone-supplemented media were needed for shoot multiplication and prolonged in vitro culture. Cultures of 25 genotypes were maintained for up to two years. The viability of in vitro shoots was maintained by supplementing the medium with FeNaEDTA, MgSO<sub>4</sub>, and glucose. Some genotypes showed enhanced performance on sugar-free media with increased light intensity, which reduced bacterial outgrowth.</p><p><strong>Conclusion: </strong>With the technical approaches presented here, we provide starting points for the establishment of beech cultures from various types of starting material, as well as for further method improvement for establishment and long-term cultivation.</p>\",\"PeriodicalId\":20100,\"journal\":{\"name\":\"Plant Methods\",\"volume\":\"21 1\",\"pages\":\"31\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11887157/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13007-025-01350-3\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-025-01350-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

背景:欧洲山毛榉(Fagus sylvatica L.)分布在整个欧洲不同的气候条件下。当地的适应,比如抗旱能力,可能成为维持山毛榉种群面对气候变化的关键。尽管在体外建立和繁殖顽固性山毛榉是困难的,但体外培养为保存和繁殖有价值的基因型提供了一种有前途的工具,并为生物技术研究提供了基础。据我们所知,这项研究是第一次使用来自种源试验的山毛榉建立体外培养,旨在捕获广泛的遗传谱并调查种源特异性的体外培养适用性。此外,一种利用幼苗的高通量方法已经开发出来,以增加建立一个种源的离体培养的成功。结果:从22个大田种源中获得生长活跃的芽,用于离体培养。12周后,13个种源(57%)诱导茎尖和节段形成新枝,成功率在3% ~ 80%之间,受种源和枝条取样日期的影响显著。2月和5月各收获一次,新梢形成率最高(18%)。然而,两年后,一个基因型实现了稳定的微繁殖。在第二种方法中,利用幼苗的全芽或茎尖进行离体培养,芽形成率在38% ~ 94%之间。建立过程中的细菌污染通过应用抗生素进行控制。在离体培养的前8周内,使用不含植物激素的培养基可以改善茎尖的初始叶片冲洗。芽部增殖和延长离体培养需要补充植物激素的培养基。25个基因型的培养维持了两年。通过在培养基中添加FeNaEDTA、MgSO4和葡萄糖来维持离体芽的活力。一些基因型在无糖培养基上的表现随着光照强度的增加而增强,从而减少了细菌的生长。结论:通过本文提出的技术途径,为建立不同类型的山毛榉培养物提供了起点,并为进一步完善山毛榉培养物的建立和长期培养提供了方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Benefiting from the past: establishing in vitro culture of European beech (Fagus sylvatica L.) from provenance trial trees and seedlings.

Background: European beech (Fagus sylvatica L.) is distributed across diverse climate conditions throughout Europe. Local adaptations, such as drought tolerance, could become crucial for maintaining beech populations facing climate change. In vitro culture offers a promising tool for preserving and propagating valuable genotypes and provides a basis for biotechnological research, although establishing and propagating recalcitrant beech in vitro is difficult. To the best of our knowledge, this study is the first to use beeches from a provenance trial to establish in vitro cultures, aiming to capture a wide genetic spectrum and investigate provenance-specific suitability for in vitro cultivation. In addition, a high-throughput method using seedlings has been developed to increase the success of establishing in vitro cultures of a provenance.

Results: Actively growing shoots from 22 field-grown provenances were obtained for in vitro establishment. After 12 weeks, shoot formation on shoot tips and nodal segments was induced in 13 provenances (57%), with success rates ranging from 3 to 80%, significantly influenced by the provenance and sampling date of the branches. Combining one harvest each in February and May resulted in the highest shoot formation rate (18%). However, after two years, stable micropropagation was achieved for a single genotype. In the second approach, whole shoots or shoot tips from seedlings were used for in vitro establishment, achieving shoot formation rates between 38 and 94%. Bacterial contamination during establishment was controlled through antibiotic application. Using culture medium without phytohormones improved initial leaf flush on shoot tips within the first 8 weeks of in vitro culture. Phytohormone-supplemented media were needed for shoot multiplication and prolonged in vitro culture. Cultures of 25 genotypes were maintained for up to two years. The viability of in vitro shoots was maintained by supplementing the medium with FeNaEDTA, MgSO4, and glucose. Some genotypes showed enhanced performance on sugar-free media with increased light intensity, which reduced bacterial outgrowth.

Conclusion: With the technical approaches presented here, we provide starting points for the establishment of beech cultures from various types of starting material, as well as for further method improvement for establishment and long-term cultivation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Methods
Plant Methods 生物-植物科学
CiteScore
9.20
自引率
3.90%
发文量
121
审稿时长
2 months
期刊介绍: Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences. There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics. Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信