Dimple Tiwari, Bhoopesh Singh Bhati, Bharti Nagpal, Amal Al-Rasheed, Masresha Getahun, Ben Othman Soufiene
{"title":"基于群体优化的加密货币价格预测情感分析融合模型。","authors":"Dimple Tiwari, Bhoopesh Singh Bhati, Bharti Nagpal, Amal Al-Rasheed, Masresha Getahun, Ben Othman Soufiene","doi":"10.1038/s41598-025-92563-y","DOIUrl":null,"url":null,"abstract":"<p><p>Social media has attracted society for decades due to its reciprocal and real-life nature. It influenced almost all societal entities, including governments, academics, industries, health, and finance. The Social Network generates unstructured information about brands, political issues, cryptocurrencies, and global pandemics. The major challenge is translating this information into reliable consumer opinion as it contains jargon, abbreviations, and reference links with previous content. Several ensemble models have been introduced to mine the enormous noisy range on social platforms. Still, these need more predictability and are the less-generalized models for social sentiment analysis. Hence, an optimized stacked-Long Short-Term Memory (LSTM)-based sentiment analysis model is proposed for cryptocurrency price prediction. The model can find the relationships of latent contextual semantic and co-occurrence statistical features between phrases in a sentence. Additionally, the proposed model comprises multiple LSTM layers, and each layer is optimized with Particle Swarm Optimization (PSO) technique to learn based on the best hyperparameters. The model's efficiency is measured in terms of confusion matrix, weighted f1-Score, weighted Precision, weighted Recall, training accuracy, and testing accuracy. Moreover, comparative results reveal that an optimized stacked LSTM outperformed. The objective of the proposed model is to introduce a benchmark sentiment analysis model for predicting cryptocurrency prices, which will be helpful for other societal sentiment predictions. A pretty significant thing for this presented model is that it can process multilingual and cross-platform social media data. This could be achieved by combining LSTMs with multilingual embeddings, fine-tuning, and effective preprocessing for providing accurate and robust sentiment analysis across diverse languages, platforms, and communication styles.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"8119"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11890570/pdf/","citationCount":"0","resultStr":"{\"title\":\"A swarm-optimization based fusion model of sentiment analysis for cryptocurrency price prediction.\",\"authors\":\"Dimple Tiwari, Bhoopesh Singh Bhati, Bharti Nagpal, Amal Al-Rasheed, Masresha Getahun, Ben Othman Soufiene\",\"doi\":\"10.1038/s41598-025-92563-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Social media has attracted society for decades due to its reciprocal and real-life nature. It influenced almost all societal entities, including governments, academics, industries, health, and finance. The Social Network generates unstructured information about brands, political issues, cryptocurrencies, and global pandemics. The major challenge is translating this information into reliable consumer opinion as it contains jargon, abbreviations, and reference links with previous content. Several ensemble models have been introduced to mine the enormous noisy range on social platforms. Still, these need more predictability and are the less-generalized models for social sentiment analysis. Hence, an optimized stacked-Long Short-Term Memory (LSTM)-based sentiment analysis model is proposed for cryptocurrency price prediction. The model can find the relationships of latent contextual semantic and co-occurrence statistical features between phrases in a sentence. Additionally, the proposed model comprises multiple LSTM layers, and each layer is optimized with Particle Swarm Optimization (PSO) technique to learn based on the best hyperparameters. The model's efficiency is measured in terms of confusion matrix, weighted f1-Score, weighted Precision, weighted Recall, training accuracy, and testing accuracy. Moreover, comparative results reveal that an optimized stacked LSTM outperformed. The objective of the proposed model is to introduce a benchmark sentiment analysis model for predicting cryptocurrency prices, which will be helpful for other societal sentiment predictions. A pretty significant thing for this presented model is that it can process multilingual and cross-platform social media data. This could be achieved by combining LSTMs with multilingual embeddings, fine-tuning, and effective preprocessing for providing accurate and robust sentiment analysis across diverse languages, platforms, and communication styles.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"8119\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11890570/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-92563-y\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-92563-y","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A swarm-optimization based fusion model of sentiment analysis for cryptocurrency price prediction.
Social media has attracted society for decades due to its reciprocal and real-life nature. It influenced almost all societal entities, including governments, academics, industries, health, and finance. The Social Network generates unstructured information about brands, political issues, cryptocurrencies, and global pandemics. The major challenge is translating this information into reliable consumer opinion as it contains jargon, abbreviations, and reference links with previous content. Several ensemble models have been introduced to mine the enormous noisy range on social platforms. Still, these need more predictability and are the less-generalized models for social sentiment analysis. Hence, an optimized stacked-Long Short-Term Memory (LSTM)-based sentiment analysis model is proposed for cryptocurrency price prediction. The model can find the relationships of latent contextual semantic and co-occurrence statistical features between phrases in a sentence. Additionally, the proposed model comprises multiple LSTM layers, and each layer is optimized with Particle Swarm Optimization (PSO) technique to learn based on the best hyperparameters. The model's efficiency is measured in terms of confusion matrix, weighted f1-Score, weighted Precision, weighted Recall, training accuracy, and testing accuracy. Moreover, comparative results reveal that an optimized stacked LSTM outperformed. The objective of the proposed model is to introduce a benchmark sentiment analysis model for predicting cryptocurrency prices, which will be helpful for other societal sentiment predictions. A pretty significant thing for this presented model is that it can process multilingual and cross-platform social media data. This could be achieved by combining LSTMs with multilingual embeddings, fine-tuning, and effective preprocessing for providing accurate and robust sentiment analysis across diverse languages, platforms, and communication styles.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.