31兆电子伏特热中子对外周血淋巴细胞的相对生物学效应。

IF 0.8 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Laura C Paterson, Fawaz Ali, Mohsen Naseri, David Perez Loureiro, Amy Festarini, Marilyne Stuart, Chad Boyer, Ronald Rogge, Christie Costello, Norma Ybarra, John Kildea, Richard B Richardson
{"title":"31兆电子伏特热中子对外周血淋巴细胞的相对生物学效应。","authors":"Laura C Paterson, Fawaz Ali, Mohsen Naseri, David Perez Loureiro, Amy Festarini, Marilyne Stuart, Chad Boyer, Ronald Rogge, Christie Costello, Norma Ybarra, John Kildea, Richard B Richardson","doi":"10.1093/rpd/ncae231","DOIUrl":null,"url":null,"abstract":"<p><p>The reported relative biological effectiveness (RBE) for thermal neutrons has a large range (5-51, for cytogenetic endpoints), which can confound radiation protection decision-making. To determine whether thermal neutron spectra can influence RBE, the RBE of reactor-derived thermal neutrons of average energy 31 meV was evaluated in human peripheral blood lymphocytes using two classical DNA double-strand break endpoints: the dicentric chromosome assay (DCA) and the cytokinesis-block micronucleus assay. Dose-response curves for 41 to 408 mGy revealed a preference for linear regression. Maximum RBE (RBEM) values of 6.7 ± 0.9 and 4.4 ± 0.7 were calculated for the DCA and the micronucleus assay, respectively. These 31 meV RBEM values were significantly lower than our prior results for 64 meV thermal neutrons, which yielded a DCA RBEM of 11.3 ± 1.6 and a micronucleus RBEM of 9.0 ± 1.1. Dose-specific RBE values decreased with increasing dose for both assays. Microdosimetry simulations demonstrated similar quality factor values for both thermal neutron spectra. Dose deposition differences on the cellular scale, the difference in dose rate between irradiation configurations, or a not-yet understood phenomenon may be responsible for the RBE difference between the 31 and 64 meV thermal spectra. These findings indicate that the currently accepted radiation weighting factor wR value of 2.5 for thermal neutrons may underestimate the radiation detriment to small or shallow tissue targets including the lens of the eye.</p>","PeriodicalId":20795,"journal":{"name":"Radiation protection dosimetry","volume":" ","pages":"297-313"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926985/pdf/","citationCount":"0","resultStr":"{\"title\":\"Relative biological effectiveness of 31 meV thermal neutrons in peripheral blood lymphocytes.\",\"authors\":\"Laura C Paterson, Fawaz Ali, Mohsen Naseri, David Perez Loureiro, Amy Festarini, Marilyne Stuart, Chad Boyer, Ronald Rogge, Christie Costello, Norma Ybarra, John Kildea, Richard B Richardson\",\"doi\":\"10.1093/rpd/ncae231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The reported relative biological effectiveness (RBE) for thermal neutrons has a large range (5-51, for cytogenetic endpoints), which can confound radiation protection decision-making. To determine whether thermal neutron spectra can influence RBE, the RBE of reactor-derived thermal neutrons of average energy 31 meV was evaluated in human peripheral blood lymphocytes using two classical DNA double-strand break endpoints: the dicentric chromosome assay (DCA) and the cytokinesis-block micronucleus assay. Dose-response curves for 41 to 408 mGy revealed a preference for linear regression. Maximum RBE (RBEM) values of 6.7 ± 0.9 and 4.4 ± 0.7 were calculated for the DCA and the micronucleus assay, respectively. These 31 meV RBEM values were significantly lower than our prior results for 64 meV thermal neutrons, which yielded a DCA RBEM of 11.3 ± 1.6 and a micronucleus RBEM of 9.0 ± 1.1. Dose-specific RBE values decreased with increasing dose for both assays. Microdosimetry simulations demonstrated similar quality factor values for both thermal neutron spectra. Dose deposition differences on the cellular scale, the difference in dose rate between irradiation configurations, or a not-yet understood phenomenon may be responsible for the RBE difference between the 31 and 64 meV thermal spectra. These findings indicate that the currently accepted radiation weighting factor wR value of 2.5 for thermal neutrons may underestimate the radiation detriment to small or shallow tissue targets including the lens of the eye.</p>\",\"PeriodicalId\":20795,\"journal\":{\"name\":\"Radiation protection dosimetry\",\"volume\":\" \",\"pages\":\"297-313\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926985/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation protection dosimetry\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/rpd/ncae231\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation protection dosimetry","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/rpd/ncae231","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

报道的热中子的相对生物有效性(RBE)有很大的范围(5-51,细胞遗传学终点),这可能会混淆辐射防护决策。为了确定热中子谱是否会影响RBE,使用两种经典的DNA双链断裂终点:双中心染色体测定法(DCA)和细胞分裂阻断微核测定法,在人外周血淋巴细胞中评估了平均能量为31 meV的反应堆衍生热中子的RBE。41 ~ 408 mGy的剂量-响应曲线显示线性回归倾向。DCA和微核检测的最大RBE (RBEM)分别为6.7±0.9和4.4±0.7。这31 meV的RBEM值明显低于我们之前对64 meV热中子的结果,后者的DCA RBEM为11.3±1.6,微核RBEM为9.0±1.1。剂量特异性RBE值随剂量增加而降低。微剂量模拟表明,两种热中子谱的质量因子值相似。细胞尺度上的剂量沉积差异、照射构型之间剂量率的差异,或一种尚未理解的现象,可能是31和64 meV热谱之间RBE差异的原因。这些发现表明,目前公认的热中子辐射加权因子wR值为2.5,可能低估了辐射对包括眼球晶状体在内的小或浅组织目标的危害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relative biological effectiveness of 31 meV thermal neutrons in peripheral blood lymphocytes.

The reported relative biological effectiveness (RBE) for thermal neutrons has a large range (5-51, for cytogenetic endpoints), which can confound radiation protection decision-making. To determine whether thermal neutron spectra can influence RBE, the RBE of reactor-derived thermal neutrons of average energy 31 meV was evaluated in human peripheral blood lymphocytes using two classical DNA double-strand break endpoints: the dicentric chromosome assay (DCA) and the cytokinesis-block micronucleus assay. Dose-response curves for 41 to 408 mGy revealed a preference for linear regression. Maximum RBE (RBEM) values of 6.7 ± 0.9 and 4.4 ± 0.7 were calculated for the DCA and the micronucleus assay, respectively. These 31 meV RBEM values were significantly lower than our prior results for 64 meV thermal neutrons, which yielded a DCA RBEM of 11.3 ± 1.6 and a micronucleus RBEM of 9.0 ± 1.1. Dose-specific RBE values decreased with increasing dose for both assays. Microdosimetry simulations demonstrated similar quality factor values for both thermal neutron spectra. Dose deposition differences on the cellular scale, the difference in dose rate between irradiation configurations, or a not-yet understood phenomenon may be responsible for the RBE difference between the 31 and 64 meV thermal spectra. These findings indicate that the currently accepted radiation weighting factor wR value of 2.5 for thermal neutrons may underestimate the radiation detriment to small or shallow tissue targets including the lens of the eye.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radiation protection dosimetry
Radiation protection dosimetry 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
1.40
自引率
10.00%
发文量
223
审稿时长
6-12 weeks
期刊介绍: Radiation Protection Dosimetry covers all aspects of personal and environmental dosimetry and monitoring, for both ionising and non-ionising radiations. This includes biological aspects, physical concepts, biophysical dosimetry, external and internal personal dosimetry and monitoring, environmental and workplace monitoring, accident dosimetry, and dosimetry related to the protection of patients. Particular emphasis is placed on papers covering the fundamentals of dosimetry; units, radiation quantities and conversion factors. Papers covering archaeological dating are included only if the fundamental measurement method or technique, such as thermoluminescence, has direct application to personal dosimetry measurements. Papers covering the dosimetric aspects of radon or other naturally occurring radioactive materials and low level radiation are included. Animal experiments and ecological sample measurements are not included unless there is a significant relevant content reason.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信