{"title":"从紫草中提取的乙酰紫草素在体外和体内杀死多重耐药革兰氏阳性病原体。","authors":"Xia Xiao, Yanhu Huang, Wei Liu, Yuan Liu, Haijie Zhang, Chuang Meng, Zhiqiang Wang","doi":"10.1002/ptr.8427","DOIUrl":null,"url":null,"abstract":"<p><p>The rising prevalence of multidrug-resistant (MDR) Gram-positive bacteria threatens the effectiveness of current antibiotic therapies. However, the development of new antibiotics has stagnated in recent years, highlighted the critical need for the discovery of innovative antimicrobial agents. This study aims to evaluate the antibacterial activity of naphthoquinones derived from Arnebia euchroma (Royle) Johnst (ADNs) and elucidate their underlying mechanisms. The antibacterial efficacy of ADNs was assessed using the microbroth dilution method. The antibacterial mechanism of acetylshikonin (ASK) was further explored through scanning electron microscopy, RNA-Seq and transcriptomic analysis, fluorescent probes, high-performance liquid chromatography, qRT-PCR and molecular docking. The results demonstrated that all the ADNs exhibit potent antibacterial activity against MDR Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus, and linezolid-resistant Enterococcus. Notably, ASK showed minimum inhibitory concentration of 1-2 μg/mL against MRSA. Mechanistic investigations revealed that ASK operates through a multifaceted antibacterial mechanism. First, ASK disrupts bacterial membrane integrity and dissipates proton motive force by targeting membrane phospholipids. Further analysis demonstrated a significant reduction in oxygen consumption and ATP production, indicative of respiratory chain inhibition. Additionally, ASK interferes with bacterial cell wall synthesis, as evidenced by reduction of peptidoglycan precursors and downregulated expression of genes involved in peptidoglycan synthesis. In conclusion, ASK represents a promising antimicrobial agent with potential efficacy against infections caused by MDR Gram-positive bacteria and offers valuable insights for the development of novel therapeutic strategies.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":"39 3","pages":"1372-1387"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acetylshikonin Derived From Arnebia euchroma (Royle) Johnst Kills Multidrug-Resistant Gram-Positive Pathogens In Vitro and In Vivo.\",\"authors\":\"Xia Xiao, Yanhu Huang, Wei Liu, Yuan Liu, Haijie Zhang, Chuang Meng, Zhiqiang Wang\",\"doi\":\"10.1002/ptr.8427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rising prevalence of multidrug-resistant (MDR) Gram-positive bacteria threatens the effectiveness of current antibiotic therapies. However, the development of new antibiotics has stagnated in recent years, highlighted the critical need for the discovery of innovative antimicrobial agents. This study aims to evaluate the antibacterial activity of naphthoquinones derived from Arnebia euchroma (Royle) Johnst (ADNs) and elucidate their underlying mechanisms. The antibacterial efficacy of ADNs was assessed using the microbroth dilution method. The antibacterial mechanism of acetylshikonin (ASK) was further explored through scanning electron microscopy, RNA-Seq and transcriptomic analysis, fluorescent probes, high-performance liquid chromatography, qRT-PCR and molecular docking. The results demonstrated that all the ADNs exhibit potent antibacterial activity against MDR Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus, and linezolid-resistant Enterococcus. Notably, ASK showed minimum inhibitory concentration of 1-2 μg/mL against MRSA. Mechanistic investigations revealed that ASK operates through a multifaceted antibacterial mechanism. First, ASK disrupts bacterial membrane integrity and dissipates proton motive force by targeting membrane phospholipids. Further analysis demonstrated a significant reduction in oxygen consumption and ATP production, indicative of respiratory chain inhibition. Additionally, ASK interferes with bacterial cell wall synthesis, as evidenced by reduction of peptidoglycan precursors and downregulated expression of genes involved in peptidoglycan synthesis. In conclusion, ASK represents a promising antimicrobial agent with potential efficacy against infections caused by MDR Gram-positive bacteria and offers valuable insights for the development of novel therapeutic strategies.</p>\",\"PeriodicalId\":20110,\"journal\":{\"name\":\"Phytotherapy Research\",\"volume\":\"39 3\",\"pages\":\"1372-1387\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytotherapy Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/ptr.8427\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytotherapy Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ptr.8427","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Acetylshikonin Derived From Arnebia euchroma (Royle) Johnst Kills Multidrug-Resistant Gram-Positive Pathogens In Vitro and In Vivo.
The rising prevalence of multidrug-resistant (MDR) Gram-positive bacteria threatens the effectiveness of current antibiotic therapies. However, the development of new antibiotics has stagnated in recent years, highlighted the critical need for the discovery of innovative antimicrobial agents. This study aims to evaluate the antibacterial activity of naphthoquinones derived from Arnebia euchroma (Royle) Johnst (ADNs) and elucidate their underlying mechanisms. The antibacterial efficacy of ADNs was assessed using the microbroth dilution method. The antibacterial mechanism of acetylshikonin (ASK) was further explored through scanning electron microscopy, RNA-Seq and transcriptomic analysis, fluorescent probes, high-performance liquid chromatography, qRT-PCR and molecular docking. The results demonstrated that all the ADNs exhibit potent antibacterial activity against MDR Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus, and linezolid-resistant Enterococcus. Notably, ASK showed minimum inhibitory concentration of 1-2 μg/mL against MRSA. Mechanistic investigations revealed that ASK operates through a multifaceted antibacterial mechanism. First, ASK disrupts bacterial membrane integrity and dissipates proton motive force by targeting membrane phospholipids. Further analysis demonstrated a significant reduction in oxygen consumption and ATP production, indicative of respiratory chain inhibition. Additionally, ASK interferes with bacterial cell wall synthesis, as evidenced by reduction of peptidoglycan precursors and downregulated expression of genes involved in peptidoglycan synthesis. In conclusion, ASK represents a promising antimicrobial agent with potential efficacy against infections caused by MDR Gram-positive bacteria and offers valuable insights for the development of novel therapeutic strategies.
期刊介绍:
Phytotherapy Research is an internationally recognized pharmacological journal that serves as a trailblazing resource for biochemists, pharmacologists, and toxicologists. We strive to disseminate groundbreaking research on medicinal plants, pushing the boundaries of knowledge and understanding in this field.
Our primary focus areas encompass pharmacology, toxicology, and the clinical applications of herbs and natural products in medicine. We actively encourage submissions on the effects of commonly consumed food ingredients and standardized plant extracts. We welcome a range of contributions including original research papers, review articles, and letters.
By providing a platform for the latest developments and discoveries in phytotherapy, we aim to support the advancement of scientific knowledge and contribute to the improvement of modern medicine.