肠道微生物群落基因组反转的综合分析揭示了肠道定植和表面粘附的关系。

IF 13.8 1区 生物学 Q1 MICROBIOLOGY
Xiaofan Jin, Alice G Cheng, Rachael B Chanin, Feiqiao B Yu, Alejandra Dimas, Marissa Jasper, Allison Weakley, Jia Yan, Ami S Bhatt, Katherine S Pollard
{"title":"肠道微生物群落基因组反转的综合分析揭示了肠道定植和表面粘附的关系。","authors":"Xiaofan Jin, Alice G Cheng, Rachael B Chanin, Feiqiao B Yu, Alejandra Dimas, Marissa Jasper, Allison Weakley, Jia Yan, Ami S Bhatt, Katherine S Pollard","doi":"10.1186/s40168-025-02052-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Bacteria use invertible genetic elements known as invertons to generate heterogeneity among a population and adapt to new and changing environments. In human gut bacteria, invertons are often found near genes associated with cell surface modifications, suggesting key roles in modulating dynamic processes such as surface adhesion and intestinal colonization. However, comprehensive testing of this hypothesis across complex bacterial communities like the human gut microbiome remains challenging. Metagenomic sequencing holds promise for detecting inversions without isolation and culturing, but ambiguity in read alignment limits the accuracy of the resulting inverton predictions.</p><p><strong>Results: </strong>Here, we developed a customized bioinformatic workflow-PhaseFinderDC-to identify and track invertons in metagenomic data. Applying this method to a defined yet complex gut community (hCom2) across different growth environments over time using both in vitro and in vivo metagenomic samples, we detected invertons in most hCom2 strains. These include invertons whose orientation probabilities change over time and are statistically associated with environmental conditions. We used motif enrichment to identify putative inverton promoters and predict genes regulated by inverton flipping during intestinal colonization and surface adhesion. Analysis of inverton-proximal genes also revealed candidate invertases that may regulate flipping of specific invertons.</p><p><strong>Conclusions: </strong>Collectively, these findings suggest that surface adhesion and intestinal colonization in complex gut communities directly modulate inverton dynamics, offering new insights into the genetic mechanisms underlying these processes. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"13 1","pages":"71"},"PeriodicalIF":13.8000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11892184/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comprehensive profiling of genomic invertons in defined gut microbial community reveals associations with intestinal colonization and surface adhesion.\",\"authors\":\"Xiaofan Jin, Alice G Cheng, Rachael B Chanin, Feiqiao B Yu, Alejandra Dimas, Marissa Jasper, Allison Weakley, Jia Yan, Ami S Bhatt, Katherine S Pollard\",\"doi\":\"10.1186/s40168-025-02052-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Bacteria use invertible genetic elements known as invertons to generate heterogeneity among a population and adapt to new and changing environments. In human gut bacteria, invertons are often found near genes associated with cell surface modifications, suggesting key roles in modulating dynamic processes such as surface adhesion and intestinal colonization. However, comprehensive testing of this hypothesis across complex bacterial communities like the human gut microbiome remains challenging. Metagenomic sequencing holds promise for detecting inversions without isolation and culturing, but ambiguity in read alignment limits the accuracy of the resulting inverton predictions.</p><p><strong>Results: </strong>Here, we developed a customized bioinformatic workflow-PhaseFinderDC-to identify and track invertons in metagenomic data. Applying this method to a defined yet complex gut community (hCom2) across different growth environments over time using both in vitro and in vivo metagenomic samples, we detected invertons in most hCom2 strains. These include invertons whose orientation probabilities change over time and are statistically associated with environmental conditions. We used motif enrichment to identify putative inverton promoters and predict genes regulated by inverton flipping during intestinal colonization and surface adhesion. Analysis of inverton-proximal genes also revealed candidate invertases that may regulate flipping of specific invertons.</p><p><strong>Conclusions: </strong>Collectively, these findings suggest that surface adhesion and intestinal colonization in complex gut communities directly modulate inverton dynamics, offering new insights into the genetic mechanisms underlying these processes. Video Abstract.</p>\",\"PeriodicalId\":18447,\"journal\":{\"name\":\"Microbiome\",\"volume\":\"13 1\",\"pages\":\"71\"},\"PeriodicalIF\":13.8000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11892184/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s40168-025-02052-7\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40168-025-02052-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:细菌利用被称为反转的可逆遗传元素在种群中产生异质性,并适应新的和不断变化的环境。在人类肠道细菌中,倒置子经常在与细胞表面修饰相关的基因附近发现,这表明在调节表面粘附和肠道定植等动态过程中起关键作用。然而,在人类肠道微生物群等复杂细菌群落中对这一假设进行全面测试仍然具有挑战性。宏基因组测序有望在没有分离和培养的情况下检测反转,但读取比对的模糊性限制了反转预测的准确性。在这里,我们开发了一个定制的生物信息学工作流程- phasefinderdc -来识别和跟踪宏基因组数据中的反转。将该方法应用于不同生长环境中定义但复杂的肠道群落(hCom2),使用体外和体内宏基因组样本,我们在大多数hCom2菌株中检测到反转。其中包括定向概率随时间而变化的反转,并且在统计上与环境条件有关。我们利用基序富集来鉴定推测的反转启动子,并预测在肠道定植和表面粘附过程中受反转翻转调控的基因。对近端倒位基因的分析也揭示了可能调节特定倒位翻转的候选倒位酶。综上所述,这些发现表明复杂肠道群落的表面粘附和肠道定植直接调节反转动力学,为这些过程背后的遗传机制提供了新的见解。视频摘要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comprehensive profiling of genomic invertons in defined gut microbial community reveals associations with intestinal colonization and surface adhesion.

Background: Bacteria use invertible genetic elements known as invertons to generate heterogeneity among a population and adapt to new and changing environments. In human gut bacteria, invertons are often found near genes associated with cell surface modifications, suggesting key roles in modulating dynamic processes such as surface adhesion and intestinal colonization. However, comprehensive testing of this hypothesis across complex bacterial communities like the human gut microbiome remains challenging. Metagenomic sequencing holds promise for detecting inversions without isolation and culturing, but ambiguity in read alignment limits the accuracy of the resulting inverton predictions.

Results: Here, we developed a customized bioinformatic workflow-PhaseFinderDC-to identify and track invertons in metagenomic data. Applying this method to a defined yet complex gut community (hCom2) across different growth environments over time using both in vitro and in vivo metagenomic samples, we detected invertons in most hCom2 strains. These include invertons whose orientation probabilities change over time and are statistically associated with environmental conditions. We used motif enrichment to identify putative inverton promoters and predict genes regulated by inverton flipping during intestinal colonization and surface adhesion. Analysis of inverton-proximal genes also revealed candidate invertases that may regulate flipping of specific invertons.

Conclusions: Collectively, these findings suggest that surface adhesion and intestinal colonization in complex gut communities directly modulate inverton dynamics, offering new insights into the genetic mechanisms underlying these processes. Video Abstract.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbiome
Microbiome MICROBIOLOGY-
CiteScore
21.90
自引率
2.60%
发文量
198
审稿时长
4 weeks
期刊介绍: Microbiome is a journal that focuses on studies of microbiomes in humans, animals, plants, and the environment. It covers both natural and manipulated microbiomes, such as those in agriculture. The journal is interested in research that uses meta-omics approaches or novel bioinformatics tools and emphasizes the community/host interaction and structure-function relationship within the microbiome. Studies that go beyond descriptive omics surveys and include experimental or theoretical approaches will be considered for publication. The journal also encourages research that establishes cause and effect relationships and supports proposed microbiome functions. However, studies of individual microbial isolates/species without exploring their impact on the host or the complex microbiome structures and functions will not be considered for publication. Microbiome is indexed in BIOSIS, Current Contents, DOAJ, Embase, MEDLINE, PubMed, PubMed Central, and Science Citations Index Expanded.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信