{"title":"Platelet hitchhiking vascular-disrupting agents for self-amplified tumor-targeting therapy.","authors":"Hongyu Chu, Yajun Xu, Yuezhan Shan, Mengmeng Sun, Weidong Zhao, Xuedong Fang, Na Shen, Zhaohui Tang","doi":"10.1186/s12951-025-03262-9","DOIUrl":null,"url":null,"abstract":"<p><p>The vascular-disrupting agent DMXAA (5,6-dimethylxanthone-4-acetic acid) exhibits potent anticancer activity by targeting tumor vasculature and activating immune responses via the cGAS-STING pathway. However, its clinical application is hindered by nonspecific targeting and significant cardiovascular toxicity. This study introduces a novel self-amplified tumor-targeting delivery system(P@NPPD)comprising azide-functionalized poly(ethylene glycol)-b-poly-[(N-2-hydroxyethyl)-aspartamide]-DMXAA (N<sub>3</sub>-PEG-b-PHEA-DMXAA, NPPD) conjugated to DBCO modified platelets. Among them, NPPD was synthesized by conjugating DMXAA to N<sub>3</sub>-PEG-b-poly-[(N-2-hydroxyethyl)-aspartamide] through esterification. This system enhances tumor-specific drug delivery while minimizing systemic toxicity. Leveraging the natural tumor-homing properties of platelets and the coagulation cascade, P@NPPD selectively targets exposed collagen at tumor sites, initiating a self-amplifying release of DMXAA. This approach achieved a 2.61-fold improvement in targeting efficiency and an 89.1% tumor suppression rate. In addition to improving drug accumulation at tumor sites, P@NPPD significantly activated local immune responses, enhancing therapeutic efficacy and safety. These findings underscore the potential of P@NPPD as a promising platform for cancer therapy.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"197"},"PeriodicalIF":10.6000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03262-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Platelet hitchhiking vascular-disrupting agents for self-amplified tumor-targeting therapy.
The vascular-disrupting agent DMXAA (5,6-dimethylxanthone-4-acetic acid) exhibits potent anticancer activity by targeting tumor vasculature and activating immune responses via the cGAS-STING pathway. However, its clinical application is hindered by nonspecific targeting and significant cardiovascular toxicity. This study introduces a novel self-amplified tumor-targeting delivery system(P@NPPD)comprising azide-functionalized poly(ethylene glycol)-b-poly-[(N-2-hydroxyethyl)-aspartamide]-DMXAA (N3-PEG-b-PHEA-DMXAA, NPPD) conjugated to DBCO modified platelets. Among them, NPPD was synthesized by conjugating DMXAA to N3-PEG-b-poly-[(N-2-hydroxyethyl)-aspartamide] through esterification. This system enhances tumor-specific drug delivery while minimizing systemic toxicity. Leveraging the natural tumor-homing properties of platelets and the coagulation cascade, P@NPPD selectively targets exposed collagen at tumor sites, initiating a self-amplifying release of DMXAA. This approach achieved a 2.61-fold improvement in targeting efficiency and an 89.1% tumor suppression rate. In addition to improving drug accumulation at tumor sites, P@NPPD significantly activated local immune responses, enhancing therapeutic efficacy and safety. These findings underscore the potential of P@NPPD as a promising platform for cancer therapy.
期刊介绍:
Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.