局部递送腺苷受体激动剂可减少与接触性超敏反应相关的炎症。

IF 5.5 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Drug Delivery and Translational Research Pub Date : 2025-10-01 Epub Date: 2025-03-08 DOI:10.1007/s13346-025-01831-x
Elizabeth R Bentley, Stacia Subick, Jake Doran, Julie Kobyra, Stephen C Balmert, Steven R Little
{"title":"局部递送腺苷受体激动剂可减少与接触性超敏反应相关的炎症。","authors":"Elizabeth R Bentley, Stacia Subick, Jake Doran, Julie Kobyra, Stephen C Balmert, Steven R Little","doi":"10.1007/s13346-025-01831-x","DOIUrl":null,"url":null,"abstract":"<p><p>Allergic contact dermatitis (ACD), a T-cell mediated inflammatory skin condition, is prompted by multiple, subsequent exposures to contact allergens (e.g., nickel). Current treatment approaches for ACD include repeated topical application or systemic delivery of immunosuppressants. These treatment strategies have many limitations, including non-specific mechanism of actions and the occurrence of side effects due to their delivery method. For this reason, we developed a novel therapeutic approach that is based upon adenosine (Ado) receptor signaling, a known anti-inflammatory pathway. Specifically, we developed a polymer microparticle-based controlled release system capable of presenting IBMECA (IBMECA-MPs), an Ado receptor agonist, to the local environment. In this study, we first sought to study the immunosuppressive effects of IBMECA on immune cells implicated in the pathogenesis of ACD (e.g., dendritic cells) in vitro. Subsequently, we examined the effects of enhancing adenosine signaling in contact hypersensitivity (CHS), an in vivo model of ACD, through local administration of IBMECA-MPs. We observed that IBMECA-MPs were capable of reducing the inflammatory response associated with CHS by reducing maturation markers of antigen-presenting cells, altering cytokine secretion, and reducing relative frequencies of effector T cell populations. To our knowledge, this is the first demonstration of therapeutic efficacy of IBMECA in CHS, as well as the first proof-of-principle demonstration of IBMECA application in the context of a local drug delivery system. Ultimately, this delivery system has the potential to be adapted for use in other T-cell mediated inflammatory conditions (e.g., transplant rejection), suggesting broader implications of this study.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":"3737-3752"},"PeriodicalIF":5.5000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local delivery of an adenosine receptor agonist reduces inflammation associated with contact hypersensitivity.\",\"authors\":\"Elizabeth R Bentley, Stacia Subick, Jake Doran, Julie Kobyra, Stephen C Balmert, Steven R Little\",\"doi\":\"10.1007/s13346-025-01831-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Allergic contact dermatitis (ACD), a T-cell mediated inflammatory skin condition, is prompted by multiple, subsequent exposures to contact allergens (e.g., nickel). Current treatment approaches for ACD include repeated topical application or systemic delivery of immunosuppressants. These treatment strategies have many limitations, including non-specific mechanism of actions and the occurrence of side effects due to their delivery method. For this reason, we developed a novel therapeutic approach that is based upon adenosine (Ado) receptor signaling, a known anti-inflammatory pathway. Specifically, we developed a polymer microparticle-based controlled release system capable of presenting IBMECA (IBMECA-MPs), an Ado receptor agonist, to the local environment. In this study, we first sought to study the immunosuppressive effects of IBMECA on immune cells implicated in the pathogenesis of ACD (e.g., dendritic cells) in vitro. Subsequently, we examined the effects of enhancing adenosine signaling in contact hypersensitivity (CHS), an in vivo model of ACD, through local administration of IBMECA-MPs. We observed that IBMECA-MPs were capable of reducing the inflammatory response associated with CHS by reducing maturation markers of antigen-presenting cells, altering cytokine secretion, and reducing relative frequencies of effector T cell populations. To our knowledge, this is the first demonstration of therapeutic efficacy of IBMECA in CHS, as well as the first proof-of-principle demonstration of IBMECA application in the context of a local drug delivery system. Ultimately, this delivery system has the potential to be adapted for use in other T-cell mediated inflammatory conditions (e.g., transplant rejection), suggesting broader implications of this study.</p>\",\"PeriodicalId\":11357,\"journal\":{\"name\":\"Drug Delivery and Translational Research\",\"volume\":\" \",\"pages\":\"3737-3752\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Delivery and Translational Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13346-025-01831-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-025-01831-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

过敏性接触性皮炎(ACD)是一种t细胞介导的炎症性皮肤病,是由多次接触接触性过敏原(如镍)引起的。目前ACD的治疗方法包括反复局部应用或全身给药免疫抑制剂。这些治疗策略有许多局限性,包括作用机制不特异性和由于其递送方式而产生的副作用。基于这个原因,我们开发了一种基于腺苷(Ado)受体信号的新型治疗方法,这是一种已知的抗炎途径。具体来说,我们开发了一种基于聚合物微粒的控释系统,能够将Ado受体激动剂IBMECA (IBMECA- mps)呈现到局部环境中。在本研究中,我们首先试图在体外研究IBMECA对ACD发病机制中涉及的免疫细胞(如树突状细胞)的免疫抑制作用。随后,我们通过局部给药IBMECA-MPs检测了接触性超敏反应(CHS) (ACD的体内模型)中增强腺苷信号的作用。我们观察到IBMECA-MPs能够通过减少抗原呈递细胞的成熟标记物、改变细胞因子分泌和降低效应T细胞群的相对频率来减少与CHS相关的炎症反应。据我们所知,这是首次证明IBMECA在CHS中的治疗效果,也是首次证明IBMECA在局部给药系统中的应用原理。最终,这种递送系统有可能适用于其他t细胞介导的炎症(例如,移植排斥),这表明本研究具有更广泛的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local delivery of an adenosine receptor agonist reduces inflammation associated with contact hypersensitivity.

Allergic contact dermatitis (ACD), a T-cell mediated inflammatory skin condition, is prompted by multiple, subsequent exposures to contact allergens (e.g., nickel). Current treatment approaches for ACD include repeated topical application or systemic delivery of immunosuppressants. These treatment strategies have many limitations, including non-specific mechanism of actions and the occurrence of side effects due to their delivery method. For this reason, we developed a novel therapeutic approach that is based upon adenosine (Ado) receptor signaling, a known anti-inflammatory pathway. Specifically, we developed a polymer microparticle-based controlled release system capable of presenting IBMECA (IBMECA-MPs), an Ado receptor agonist, to the local environment. In this study, we first sought to study the immunosuppressive effects of IBMECA on immune cells implicated in the pathogenesis of ACD (e.g., dendritic cells) in vitro. Subsequently, we examined the effects of enhancing adenosine signaling in contact hypersensitivity (CHS), an in vivo model of ACD, through local administration of IBMECA-MPs. We observed that IBMECA-MPs were capable of reducing the inflammatory response associated with CHS by reducing maturation markers of antigen-presenting cells, altering cytokine secretion, and reducing relative frequencies of effector T cell populations. To our knowledge, this is the first demonstration of therapeutic efficacy of IBMECA in CHS, as well as the first proof-of-principle demonstration of IBMECA application in the context of a local drug delivery system. Ultimately, this delivery system has the potential to be adapted for use in other T-cell mediated inflammatory conditions (e.g., transplant rejection), suggesting broader implications of this study.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Delivery and Translational Research
Drug Delivery and Translational Research MEDICINE, RESEARCH & EXPERIMENTALPHARMACOL-PHARMACOLOGY & PHARMACY
CiteScore
11.70
自引率
1.90%
发文量
160
期刊介绍: The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions. Research focused on the following areas of translational drug delivery research will be considered for publication in the journal. Designing and developing novel drug delivery systems, with a focus on their application to disease conditions; Preclinical and clinical data related to drug delivery systems; Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes Short-term and long-term biocompatibility of drug delivery systems, host response; Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering; Image-guided drug therapy, Nanomedicine; Devices for drug delivery and drug/device combination products. In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信