脑内甲状腺激素稳态紊乱介导的发育性神经毒性机制:一个不良后果通路网络。

IF 5.7 2区 医学 Q1 TOXICOLOGY
Nathalie T O M Dierichs, Aldert H Piersma, Robin P Peeters, W Edward Visser, Marcel E Meima, Ellen V S Hessel
{"title":"脑内甲状腺激素稳态紊乱介导的发育性神经毒性机制:一个不良后果通路网络。","authors":"Nathalie T O M Dierichs, Aldert H Piersma, Robin P Peeters, W Edward Visser, Marcel E Meima, Ellen V S Hessel","doi":"10.1080/10408444.2025.2461076","DOIUrl":null,"url":null,"abstract":"<p><p>Thyroid hormone (TH) is crucial for proper neurodevelopment. Insufficient TH concentrations in early life are associated with lower IQ and delayed motor development in children. Intracellular levels of TH are modulated via the transmembrane transport of TH and intracellular deiodination, and can mediate gene transcription via binding to the nuclear TH receptor. Chemical exposure can disrupt TH homeostasis via modes of action targeting intracellular mechanisms, thereby potentially influencing TH transport, deiodination or signaling. Understanding the cause and effect relationships of chemical hazards interfering with TH homeostasis in the developing brain is necessary to identify how chemicals might disturb brain development and result in neurodevelopmental disorders. Adverse Outcome Pathways (AOPs) can provide a template for mapping these relationships, and so far multiple AOPs have been developed for TH homeostasis and adverse effects on cognition. The present review aims to expand current AOP networks by (1) summarizing the most important factors in the regulation of brain development under influence of TH, (2) integrating human-based mechanistic information of biological pathways which can be disturbed by TH disrupting chemicals, and (3) by incorporating brain-specific TH-mediated physiology, including barriers and cell specificity, as well as clinical knowledge. TH-specific pathways in the fetal brain are highlighted and supported by distinguishing cell type specific Molecular Initiating Events (MIEs) and downstream Key Events (KEs) for astrocytes, neurons and oligodendrocytes. Two main pathways leading to adverse outcomes (AOs) in the areas of 'cognition' and 'motor function' are decreased myelination due to oligodendrocyte dysfunction, and decreased synaptogenesis and network formation via the neurons. The proposed AOP framework can form a basis for selecting developmental neurotoxic <i>in vitro</i> and <i>in silico</i> test systems for an innovative human-focused hazard testing strategy and risk assessment of chemical exposure.</p>","PeriodicalId":10869,"journal":{"name":"Critical Reviews in Toxicology","volume":" ","pages":"1-17"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanisms of developmental neurotoxicity mediated by perturbed thyroid hormone homeostasis in the brain: an adverse outcome pathway network.\",\"authors\":\"Nathalie T O M Dierichs, Aldert H Piersma, Robin P Peeters, W Edward Visser, Marcel E Meima, Ellen V S Hessel\",\"doi\":\"10.1080/10408444.2025.2461076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thyroid hormone (TH) is crucial for proper neurodevelopment. Insufficient TH concentrations in early life are associated with lower IQ and delayed motor development in children. Intracellular levels of TH are modulated via the transmembrane transport of TH and intracellular deiodination, and can mediate gene transcription via binding to the nuclear TH receptor. Chemical exposure can disrupt TH homeostasis via modes of action targeting intracellular mechanisms, thereby potentially influencing TH transport, deiodination or signaling. Understanding the cause and effect relationships of chemical hazards interfering with TH homeostasis in the developing brain is necessary to identify how chemicals might disturb brain development and result in neurodevelopmental disorders. Adverse Outcome Pathways (AOPs) can provide a template for mapping these relationships, and so far multiple AOPs have been developed for TH homeostasis and adverse effects on cognition. The present review aims to expand current AOP networks by (1) summarizing the most important factors in the regulation of brain development under influence of TH, (2) integrating human-based mechanistic information of biological pathways which can be disturbed by TH disrupting chemicals, and (3) by incorporating brain-specific TH-mediated physiology, including barriers and cell specificity, as well as clinical knowledge. TH-specific pathways in the fetal brain are highlighted and supported by distinguishing cell type specific Molecular Initiating Events (MIEs) and downstream Key Events (KEs) for astrocytes, neurons and oligodendrocytes. Two main pathways leading to adverse outcomes (AOs) in the areas of 'cognition' and 'motor function' are decreased myelination due to oligodendrocyte dysfunction, and decreased synaptogenesis and network formation via the neurons. The proposed AOP framework can form a basis for selecting developmental neurotoxic <i>in vitro</i> and <i>in silico</i> test systems for an innovative human-focused hazard testing strategy and risk assessment of chemical exposure.</p>\",\"PeriodicalId\":10869,\"journal\":{\"name\":\"Critical Reviews in Toxicology\",\"volume\":\" \",\"pages\":\"1-17\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10408444.2025.2461076\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10408444.2025.2461076","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

甲状腺激素(TH)对正常的神经发育至关重要。生命早期TH浓度不足与儿童低智商和运动发育迟缓有关。细胞内的TH水平通过TH的跨膜转运和细胞内的去碘作用来调节,并通过与核TH受体的结合介导基因转录。化学暴露可通过针对细胞内机制的作用模式破坏TH稳态,从而潜在地影响TH转运、脱碘或信号传导。了解化学物质干扰发育中的大脑TH稳态的因果关系,对于确定化学物质如何干扰大脑发育并导致神经发育障碍是必要的。不良结果通路(AOPs)可以为绘制这些关系提供一个模板,到目前为止,已经开发了多个AOPs用于TH稳态和对认知的不利影响。本综述旨在通过(1)总结在TH影响下调节大脑发育的最重要因素,(2)整合可被TH干扰化学物质干扰的生物通路的基于人类的机制信息,以及(3)结合脑特异性TH介导的生理学,包括屏障和细胞特异性,以及临床知识来扩展当前的AOP网络。通过区分星形胶质细胞、神经元和少突胶质细胞的细胞类型特异性分子启动事件(MIEs)和下游关键事件(KEs),胎儿大脑中th特异性通路得到突出和支持。导致“认知”和“运动功能”领域不良结果(AOs)的两个主要途径是由于少突胶质细胞功能障碍导致的髓鞘形成减少,以及神经元突触发生和网络形成减少。提出的AOP框架可以为选择发育性神经毒性体外和计算机测试系统提供基础,用于创新的以人为中心的危害测试策略和化学品暴露风险评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanisms of developmental neurotoxicity mediated by perturbed thyroid hormone homeostasis in the brain: an adverse outcome pathway network.

Thyroid hormone (TH) is crucial for proper neurodevelopment. Insufficient TH concentrations in early life are associated with lower IQ and delayed motor development in children. Intracellular levels of TH are modulated via the transmembrane transport of TH and intracellular deiodination, and can mediate gene transcription via binding to the nuclear TH receptor. Chemical exposure can disrupt TH homeostasis via modes of action targeting intracellular mechanisms, thereby potentially influencing TH transport, deiodination or signaling. Understanding the cause and effect relationships of chemical hazards interfering with TH homeostasis in the developing brain is necessary to identify how chemicals might disturb brain development and result in neurodevelopmental disorders. Adverse Outcome Pathways (AOPs) can provide a template for mapping these relationships, and so far multiple AOPs have been developed for TH homeostasis and adverse effects on cognition. The present review aims to expand current AOP networks by (1) summarizing the most important factors in the regulation of brain development under influence of TH, (2) integrating human-based mechanistic information of biological pathways which can be disturbed by TH disrupting chemicals, and (3) by incorporating brain-specific TH-mediated physiology, including barriers and cell specificity, as well as clinical knowledge. TH-specific pathways in the fetal brain are highlighted and supported by distinguishing cell type specific Molecular Initiating Events (MIEs) and downstream Key Events (KEs) for astrocytes, neurons and oligodendrocytes. Two main pathways leading to adverse outcomes (AOs) in the areas of 'cognition' and 'motor function' are decreased myelination due to oligodendrocyte dysfunction, and decreased synaptogenesis and network formation via the neurons. The proposed AOP framework can form a basis for selecting developmental neurotoxic in vitro and in silico test systems for an innovative human-focused hazard testing strategy and risk assessment of chemical exposure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.50
自引率
1.70%
发文量
29
期刊介绍: Critical Reviews in Toxicology provides up-to-date, objective analyses of topics related to the mechanisms of action, responses, and assessment of health risks due to toxicant exposure. The journal publishes critical, comprehensive reviews of research findings in toxicology and the application of toxicological information in assessing human health hazards and risks. Toxicants of concern include commodity and specialty chemicals such as formaldehyde, acrylonitrile, and pesticides; pharmaceutical agents of all types; consumer products such as macronutrients and food additives; environmental agents such as ambient ozone; and occupational exposures such as asbestos and benzene.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信