{"title":"Medium chain fatty acid production from CO<sub>2</sub> in integrated dark fermentation-microbial electrosynthesis reactor.","authors":"Narnepati Krishna Chaitanya, Pritha Chatterjee","doi":"10.1016/j.biortech.2025.132371","DOIUrl":null,"url":null,"abstract":"<p><p>Emerging technologies aim to convert CO<sub>2</sub> into biofuels and chemicals, reducing greenhouse gas emissions. Microbial electrosynthesis (MES) offers promise for producing organic products, but challenges remain in energy efficiency and medium-chain fatty acid (MCFA) synthesis. This study demonstrates long-term, continuous caproic acid production in an integrated dark fermentation-MES (DF-MES) system using enriched mixed cultures. A maximum caproic acid production rate of 0.47 ± 0.16 g L<sup>-1</sup> d<sup>-1</sup> was achieved, with a 73 % selectivity, 83 % carbon recovery and 94 % electron recovery. Integration of DF reduced external energy demand by 60 %, while continuous operation increased production rates by 14.6 % over batch mode, maintained stability for over three months. These findings highlight DF-MES integration as a viable approach to reducing energy demand while ensuring sustained caproic acid production.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"132371"},"PeriodicalIF":9.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2025.132371","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Medium chain fatty acid production from CO2 in integrated dark fermentation-microbial electrosynthesis reactor.
Emerging technologies aim to convert CO2 into biofuels and chemicals, reducing greenhouse gas emissions. Microbial electrosynthesis (MES) offers promise for producing organic products, but challenges remain in energy efficiency and medium-chain fatty acid (MCFA) synthesis. This study demonstrates long-term, continuous caproic acid production in an integrated dark fermentation-MES (DF-MES) system using enriched mixed cultures. A maximum caproic acid production rate of 0.47 ± 0.16 g L-1 d-1 was achieved, with a 73 % selectivity, 83 % carbon recovery and 94 % electron recovery. Integration of DF reduced external energy demand by 60 %, while continuous operation increased production rates by 14.6 % over batch mode, maintained stability for over three months. These findings highlight DF-MES integration as a viable approach to reducing energy demand while ensuring sustained caproic acid production.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.