抑制GSK3可改善纽芬兰ACM患者ipsc -心肌细胞的异常收缩性。

IF 5 2区 生物学 Q2 CELL BIOLOGY
Rebecca J Noort, Wesam Salman, Camila Fuchs, Ursula Braun, David Pace, Kathleen A Hodgkinson, Jessica L Esseltine
{"title":"抑制GSK3可改善纽芬兰ACM患者ipsc -心肌细胞的异常收缩性。","authors":"Rebecca J Noort, Wesam Salman, Camila Fuchs, Ursula Braun, David Pace, Kathleen A Hodgkinson, Jessica L Esseltine","doi":"10.1152/ajpcell.01025.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Arrhythmogenic cardiomyopathy (ACM) is clinically characterized by ventricular arrhythmias causing sudden cardiac death and fibrofatty replacement of the myocardium, leading to heart failure. One form of ACM is highly prevalent in the Canadian Province of Newfoundland and Labrador (NL) and has earned the moniker, \"The Newfoundland Curse\". ACM in NL is often caused by a fully penetrant heterozygous missense pathogenic variant in the <i>TMEM43</i> gene (<i>TMEM43</i> c.1073C>T; TMEM43 p.S358L). Although the causative variant has been identified, little is known about the function of the TMEM43 protein in cardiomyocytes, how the TMEM43 p.S358L mutation contributes to the development of arrhythmias, or why the disease is more severe in males than in females. To explore the role of TMEM43 in cardiomyocyte function, we generated induced pluripotent stem cells (iPSCs) from two severely affected male Newfoundland patients with ACM (TMEM43 p.S358L). CRISPR-Cas9 was used to genetically \"repair\" the heterozygous TMEM43 variant in ACM patient iPSCs. ACM patient iPSC-cardiomyocytes (iPSC-CMs) with the TMEM43 p.S358L variant display pro-arrhythmogenic phenotypes in vitro with significantly elevated contraction rates and altered calcium handling, although no obvious gross abnormalities were observed across several major intracellular organelles. GSK3 inhibition significantly increased the protein expression of β-catenin as well as Lamin A/C and ameliorated the proarrhythmic tendencies of ACM patient iPSC-CMs.<b>NEW & NOTEWORTHY</b> This is the first characterization of induced pluripotent stem cell-cardiomyocytes (iPSC-CMs) from Newfoundland patients with ACM. We find that ACM iPSC-CMs exhibit extreme proarrhythmic tendencies that can be normalized with GSK3 inhibition. Importantly, GSK3 inhibition is accompanied by a significant increase in key proteins, such as β-catenin and Lamin A/C, pointing toward a possible mechanism both for disease pathogenesis and therapy via GSK3 inhibitors.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C1206-C1219"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GSK3 inhibition ameliorates the abnormal contractility of Newfoundland ACM patient iPSC-cardiomyocytes.\",\"authors\":\"Rebecca J Noort, Wesam Salman, Camila Fuchs, Ursula Braun, David Pace, Kathleen A Hodgkinson, Jessica L Esseltine\",\"doi\":\"10.1152/ajpcell.01025.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Arrhythmogenic cardiomyopathy (ACM) is clinically characterized by ventricular arrhythmias causing sudden cardiac death and fibrofatty replacement of the myocardium, leading to heart failure. One form of ACM is highly prevalent in the Canadian Province of Newfoundland and Labrador (NL) and has earned the moniker, \\\"The Newfoundland Curse\\\". ACM in NL is often caused by a fully penetrant heterozygous missense pathogenic variant in the <i>TMEM43</i> gene (<i>TMEM43</i> c.1073C>T; TMEM43 p.S358L). Although the causative variant has been identified, little is known about the function of the TMEM43 protein in cardiomyocytes, how the TMEM43 p.S358L mutation contributes to the development of arrhythmias, or why the disease is more severe in males than in females. To explore the role of TMEM43 in cardiomyocyte function, we generated induced pluripotent stem cells (iPSCs) from two severely affected male Newfoundland patients with ACM (TMEM43 p.S358L). CRISPR-Cas9 was used to genetically \\\"repair\\\" the heterozygous TMEM43 variant in ACM patient iPSCs. ACM patient iPSC-cardiomyocytes (iPSC-CMs) with the TMEM43 p.S358L variant display pro-arrhythmogenic phenotypes in vitro with significantly elevated contraction rates and altered calcium handling, although no obvious gross abnormalities were observed across several major intracellular organelles. GSK3 inhibition significantly increased the protein expression of β-catenin as well as Lamin A/C and ameliorated the proarrhythmic tendencies of ACM patient iPSC-CMs.<b>NEW & NOTEWORTHY</b> This is the first characterization of induced pluripotent stem cell-cardiomyocytes (iPSC-CMs) from Newfoundland patients with ACM. We find that ACM iPSC-CMs exhibit extreme proarrhythmic tendencies that can be normalized with GSK3 inhibition. Importantly, GSK3 inhibition is accompanied by a significant increase in key proteins, such as β-catenin and Lamin A/C, pointing toward a possible mechanism both for disease pathogenesis and therapy via GSK3 inhibitors.</p>\",\"PeriodicalId\":7585,\"journal\":{\"name\":\"American journal of physiology. Cell physiology\",\"volume\":\" \",\"pages\":\"C1206-C1219\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Cell physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpcell.01025.2024\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.01025.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

心律失常性心肌病(ACM)的临床特征是室性心律失常导致心源性猝死和纤维脂肪替代心肌导致心力衰竭。一种形式的ACM在加拿大纽芬兰和拉布拉多省(NL)非常普遍,并赢得了“纽芬兰诅咒”的绰号。NL患者的这种ACM通常是由TMEM43基因的完全渗透杂合错义致病变异引起的(TMEM43 c.1073C>T;TMEM43 p.S358L)。尽管已经确定了致病变异,但对于心肌细胞中TMEM43蛋白的功能,TMEM43 p.S358L突变如何促进心律失常的发展,以及为什么这种疾病在男性中比女性更严重,知之甚少。为了探索TMEM43在心肌细胞功能中的作用,我们从2名严重影响纽芬兰ACM (TMEM43 p.S358L)的男性患者身上获得了诱导多能干细胞(iPSCs)。利用CRISPR-Cas9基因“修复”ACM患者iPSCs中的杂合TMEM43变异或敲除TMEM43基因。具有TMEM43 p.S358L变异的ACM患者ipsc -心肌细胞在体外显示出促心律失常表型,收缩率显著升高,钙处理改变,尽管在几个主要细胞内细胞器中未观察到明显的严重异常。抑制GSK3可显著提高β-catenin和Lamin A/C的蛋白表达,改善ACM患者iPSC-CMs的致心律失常倾向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GSK3 inhibition ameliorates the abnormal contractility of Newfoundland ACM patient iPSC-cardiomyocytes.

Arrhythmogenic cardiomyopathy (ACM) is clinically characterized by ventricular arrhythmias causing sudden cardiac death and fibrofatty replacement of the myocardium, leading to heart failure. One form of ACM is highly prevalent in the Canadian Province of Newfoundland and Labrador (NL) and has earned the moniker, "The Newfoundland Curse". ACM in NL is often caused by a fully penetrant heterozygous missense pathogenic variant in the TMEM43 gene (TMEM43 c.1073C>T; TMEM43 p.S358L). Although the causative variant has been identified, little is known about the function of the TMEM43 protein in cardiomyocytes, how the TMEM43 p.S358L mutation contributes to the development of arrhythmias, or why the disease is more severe in males than in females. To explore the role of TMEM43 in cardiomyocyte function, we generated induced pluripotent stem cells (iPSCs) from two severely affected male Newfoundland patients with ACM (TMEM43 p.S358L). CRISPR-Cas9 was used to genetically "repair" the heterozygous TMEM43 variant in ACM patient iPSCs. ACM patient iPSC-cardiomyocytes (iPSC-CMs) with the TMEM43 p.S358L variant display pro-arrhythmogenic phenotypes in vitro with significantly elevated contraction rates and altered calcium handling, although no obvious gross abnormalities were observed across several major intracellular organelles. GSK3 inhibition significantly increased the protein expression of β-catenin as well as Lamin A/C and ameliorated the proarrhythmic tendencies of ACM patient iPSC-CMs.NEW & NOTEWORTHY This is the first characterization of induced pluripotent stem cell-cardiomyocytes (iPSC-CMs) from Newfoundland patients with ACM. We find that ACM iPSC-CMs exhibit extreme proarrhythmic tendencies that can be normalized with GSK3 inhibition. Importantly, GSK3 inhibition is accompanied by a significant increase in key proteins, such as β-catenin and Lamin A/C, pointing toward a possible mechanism both for disease pathogenesis and therapy via GSK3 inhibitors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
1.80%
发文量
252
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信