{"title":"ChREBP介导fbp1缺陷肝脏代谢重塑","authors":"Chen-Ma Wang, Qiu-Fang Bai, Ya-Jin Liu, Jie Lin, Chun-Chun Wei, Xian-Hua Ma, Jia-Mu Zhao, Meng Zhu, Yu-Xia Chen, Ya-Nan Shi, Jian-Hui Shi, Weiping J Zhang","doi":"10.1152/ajpcell.00875.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The deficiency of fructose-1,6-bisphosphatase 1 (FBP1), a key enzyme of gluconeogenesis, causes fatty liver. However, its underlying mechanism and physiological significance are not fully understood. Here we demonstrate that carbohydrate response element-binding protein (ChREBP) mediates lipid metabolic remodeling and promotes progressive triglyceride accumulation against metabolic injury in adult FBP1-deficient liver. Inducible liver-specific deletion of Fbp1 gene caused progressive hepatomegaly and hepatic steatosis, with a marked increase in hepatic de novo lipogenesis (DNL) as well as a decrease in plasma β-hydroxybutyrate levels. Notably, FBP1 deficiency resulted in a persistent activation of ChREBP and its target genes involved in glycolysis, lipogenesis, and fatty acid oxidation, even under fasting conditions. Furthermore, liver-specific ChREBP disruption could markedly restore the phenotypes of enhanced DNL and triglyceride accumulation in FBP1-deficient liver but exacerbated its hepatomegaly and liver injury, which was associated with remarkable energy deficit, impaired mammalian target of rapamycin (mTOR) activation, and increased oxidative stress. Furthermore, metabolomics analysis revealed a robust elevation of phosphoenolpyruvate, phosphoglycerates, phospholipids, and ceramides caused by ChREBP deletion in FBP1-deficient liver. Put together, these results suggest that overactivation of ChREBP pathway mediates liver metabolic remodeling in the absence of FBP1, which contributes to the pathogenesis of progressive hepatic steatosis and provides a protection against liver injury. Thus, our findings point to a beneficial role of ChREBP in metabolic remodeling in the context of excessive gluconeogenic intermediates.<b>NEW & NOTEWORTHY</b> FBP1 deficiency in adulthood causes progressive hepatic steatosis due to the overactivation of ChREBP pathway, which enhances lipid synthesis and inhibits fat oxidation. ChREBP-mediated metabolic remodeling protects against liver injury caused by energy deficit and oxidative stress in FBP1-deficient liver.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C1234-C1246"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ChREBP mediates metabolic remodeling in FBP1-deficient liver.\",\"authors\":\"Chen-Ma Wang, Qiu-Fang Bai, Ya-Jin Liu, Jie Lin, Chun-Chun Wei, Xian-Hua Ma, Jia-Mu Zhao, Meng Zhu, Yu-Xia Chen, Ya-Nan Shi, Jian-Hui Shi, Weiping J Zhang\",\"doi\":\"10.1152/ajpcell.00875.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The deficiency of fructose-1,6-bisphosphatase 1 (FBP1), a key enzyme of gluconeogenesis, causes fatty liver. However, its underlying mechanism and physiological significance are not fully understood. Here we demonstrate that carbohydrate response element-binding protein (ChREBP) mediates lipid metabolic remodeling and promotes progressive triglyceride accumulation against metabolic injury in adult FBP1-deficient liver. Inducible liver-specific deletion of Fbp1 gene caused progressive hepatomegaly and hepatic steatosis, with a marked increase in hepatic de novo lipogenesis (DNL) as well as a decrease in plasma β-hydroxybutyrate levels. Notably, FBP1 deficiency resulted in a persistent activation of ChREBP and its target genes involved in glycolysis, lipogenesis, and fatty acid oxidation, even under fasting conditions. Furthermore, liver-specific ChREBP disruption could markedly restore the phenotypes of enhanced DNL and triglyceride accumulation in FBP1-deficient liver but exacerbated its hepatomegaly and liver injury, which was associated with remarkable energy deficit, impaired mammalian target of rapamycin (mTOR) activation, and increased oxidative stress. Furthermore, metabolomics analysis revealed a robust elevation of phosphoenolpyruvate, phosphoglycerates, phospholipids, and ceramides caused by ChREBP deletion in FBP1-deficient liver. Put together, these results suggest that overactivation of ChREBP pathway mediates liver metabolic remodeling in the absence of FBP1, which contributes to the pathogenesis of progressive hepatic steatosis and provides a protection against liver injury. Thus, our findings point to a beneficial role of ChREBP in metabolic remodeling in the context of excessive gluconeogenic intermediates.<b>NEW & NOTEWORTHY</b> FBP1 deficiency in adulthood causes progressive hepatic steatosis due to the overactivation of ChREBP pathway, which enhances lipid synthesis and inhibits fat oxidation. ChREBP-mediated metabolic remodeling protects against liver injury caused by energy deficit and oxidative stress in FBP1-deficient liver.</p>\",\"PeriodicalId\":7585,\"journal\":{\"name\":\"American journal of physiology. Cell physiology\",\"volume\":\" \",\"pages\":\"C1234-C1246\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Cell physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpcell.00875.2024\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00875.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
ChREBP mediates metabolic remodeling in FBP1-deficient liver.
The deficiency of fructose-1,6-bisphosphatase 1 (FBP1), a key enzyme of gluconeogenesis, causes fatty liver. However, its underlying mechanism and physiological significance are not fully understood. Here we demonstrate that carbohydrate response element-binding protein (ChREBP) mediates lipid metabolic remodeling and promotes progressive triglyceride accumulation against metabolic injury in adult FBP1-deficient liver. Inducible liver-specific deletion of Fbp1 gene caused progressive hepatomegaly and hepatic steatosis, with a marked increase in hepatic de novo lipogenesis (DNL) as well as a decrease in plasma β-hydroxybutyrate levels. Notably, FBP1 deficiency resulted in a persistent activation of ChREBP and its target genes involved in glycolysis, lipogenesis, and fatty acid oxidation, even under fasting conditions. Furthermore, liver-specific ChREBP disruption could markedly restore the phenotypes of enhanced DNL and triglyceride accumulation in FBP1-deficient liver but exacerbated its hepatomegaly and liver injury, which was associated with remarkable energy deficit, impaired mammalian target of rapamycin (mTOR) activation, and increased oxidative stress. Furthermore, metabolomics analysis revealed a robust elevation of phosphoenolpyruvate, phosphoglycerates, phospholipids, and ceramides caused by ChREBP deletion in FBP1-deficient liver. Put together, these results suggest that overactivation of ChREBP pathway mediates liver metabolic remodeling in the absence of FBP1, which contributes to the pathogenesis of progressive hepatic steatosis and provides a protection against liver injury. Thus, our findings point to a beneficial role of ChREBP in metabolic remodeling in the context of excessive gluconeogenic intermediates.NEW & NOTEWORTHY FBP1 deficiency in adulthood causes progressive hepatic steatosis due to the overactivation of ChREBP pathway, which enhances lipid synthesis and inhibits fat oxidation. ChREBP-mediated metabolic remodeling protects against liver injury caused by energy deficit and oxidative stress in FBP1-deficient liver.
期刊介绍:
The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.