生物膜介导的外源生物和重金属的生物修复:微生物生态学、分子机制和新兴生物技术应用的综合综述。

IF 2.6 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
3 Biotech Pub Date : 2025-04-01 Epub Date: 2025-03-07 DOI:10.1007/s13205-025-04252-2
Argajit Sarkar, Surajit Bhattacharjee
{"title":"生物膜介导的外源生物和重金属的生物修复:微生物生态学、分子机制和新兴生物技术应用的综合综述。","authors":"Argajit Sarkar, Surajit Bhattacharjee","doi":"10.1007/s13205-025-04252-2","DOIUrl":null,"url":null,"abstract":"<p><p>Environmental pollution, driven by rapid industrialization and urbanization, has emerged as a critical global challenge in the twenty-first century. This comprehensive review explores the potential of bacterial biofilms in bioremediation, focusing on their ability to degrade and transform a wide array of pollutants, including heavy metals, persistent organic pollutants (POPs), oil spills, pesticides, and emerging contaminants, such as pharmaceuticals and microplastics. The unique structural and functional characteristics of biofilms, including their extracellular polymeric substance (EPS) matrix, enhanced genetic exchange, and metabolic cooperation, contribute to their superior pollutant degradation capabilities compared to planktonic bacteria. Recent advancements in biofilm-mediated bioremediation include the application of genetically engineered microorganisms, nanoparticle-biofilm interactions, and innovative biofilm reactor designs. The CRISPR-Cas9 system has shown promise in enhancing the degradative capabilities of biofilm-forming bacteria while integrating nanoparticles with bacterial biofilms demonstrates significant improvements in pollutant degradation efficiency. As global pollution rises, biofilm-based bioremediation emerges as a cost-effective and environmentally friendly approach to address diverse contaminants. This review signifies the need for further research to optimize these techniques and harness their full potential in addressing pressing environmental challenges.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 4","pages":"78"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889332/pdf/","citationCount":"0","resultStr":"{\"title\":\"Biofilm-mediated bioremediation of xenobiotics and heavy metals: a comprehensive review of microbial ecology, molecular mechanisms, and emerging biotechnological applications.\",\"authors\":\"Argajit Sarkar, Surajit Bhattacharjee\",\"doi\":\"10.1007/s13205-025-04252-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Environmental pollution, driven by rapid industrialization and urbanization, has emerged as a critical global challenge in the twenty-first century. This comprehensive review explores the potential of bacterial biofilms in bioremediation, focusing on their ability to degrade and transform a wide array of pollutants, including heavy metals, persistent organic pollutants (POPs), oil spills, pesticides, and emerging contaminants, such as pharmaceuticals and microplastics. The unique structural and functional characteristics of biofilms, including their extracellular polymeric substance (EPS) matrix, enhanced genetic exchange, and metabolic cooperation, contribute to their superior pollutant degradation capabilities compared to planktonic bacteria. Recent advancements in biofilm-mediated bioremediation include the application of genetically engineered microorganisms, nanoparticle-biofilm interactions, and innovative biofilm reactor designs. The CRISPR-Cas9 system has shown promise in enhancing the degradative capabilities of biofilm-forming bacteria while integrating nanoparticles with bacterial biofilms demonstrates significant improvements in pollutant degradation efficiency. As global pollution rises, biofilm-based bioremediation emerges as a cost-effective and environmentally friendly approach to address diverse contaminants. This review signifies the need for further research to optimize these techniques and harness their full potential in addressing pressing environmental challenges.</p>\",\"PeriodicalId\":7067,\"journal\":{\"name\":\"3 Biotech\",\"volume\":\"15 4\",\"pages\":\"78\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889332/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3 Biotech\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13205-025-04252-2\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-025-04252-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在快速工业化和城市化的推动下,环境污染已成为二十一世纪全球面临的重大挑战。这篇综合综述探讨了细菌生物膜在生物修复中的潜力,重点是它们降解和转化各种污染物的能力,包括重金属、持久性有机污染物(POPs)、石油泄漏、农药和新兴污染物,如药品和微塑料。与浮游细菌相比,生物膜独特的结构和功能特征,包括细胞外聚合物质(EPS)基质、增强的遗传交换和代谢合作,有助于它们具有优越的污染物降解能力。生物膜介导的生物修复的最新进展包括基因工程微生物的应用、纳米颗粒-生物膜的相互作用以及创新的生物膜反应器设计。CRISPR-Cas9系统有望增强生物膜形成细菌的降解能力,而将纳米颗粒与细菌生物膜结合在一起,可以显著提高污染物的降解效率。随着全球污染的增加,基于生物膜的生物修复作为一种经济有效且环境友好的方法来解决各种污染物。这一综述表明需要进一步研究以优化这些技术并充分利用其潜力来应对紧迫的环境挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biofilm-mediated bioremediation of xenobiotics and heavy metals: a comprehensive review of microbial ecology, molecular mechanisms, and emerging biotechnological applications.

Environmental pollution, driven by rapid industrialization and urbanization, has emerged as a critical global challenge in the twenty-first century. This comprehensive review explores the potential of bacterial biofilms in bioremediation, focusing on their ability to degrade and transform a wide array of pollutants, including heavy metals, persistent organic pollutants (POPs), oil spills, pesticides, and emerging contaminants, such as pharmaceuticals and microplastics. The unique structural and functional characteristics of biofilms, including their extracellular polymeric substance (EPS) matrix, enhanced genetic exchange, and metabolic cooperation, contribute to their superior pollutant degradation capabilities compared to planktonic bacteria. Recent advancements in biofilm-mediated bioremediation include the application of genetically engineered microorganisms, nanoparticle-biofilm interactions, and innovative biofilm reactor designs. The CRISPR-Cas9 system has shown promise in enhancing the degradative capabilities of biofilm-forming bacteria while integrating nanoparticles with bacterial biofilms demonstrates significant improvements in pollutant degradation efficiency. As global pollution rises, biofilm-based bioremediation emerges as a cost-effective and environmentally friendly approach to address diverse contaminants. This review signifies the need for further research to optimize these techniques and harness their full potential in addressing pressing environmental challenges.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
3 Biotech
3 Biotech Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍: 3 Biotech publishes the results of the latest research related to the study and application of biotechnology to: - Medicine and Biomedical Sciences - Agriculture - The Environment The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信