利用荧光显微镜对土壤中微塑料进行有质量保证的测量。

IF 3.8 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
Quynh Nhu Phan Le, Crispin Halsall, Stoyana Peneva, Olivia Wrigley, Melanie Braun, Wulf Amelung, Lorna Ashton, Ben W J Surridge, John Quinton
{"title":"利用荧光显微镜对土壤中微塑料进行有质量保证的测量。","authors":"Quynh Nhu Phan Le, Crispin Halsall, Stoyana Peneva, Olivia Wrigley, Melanie Braun, Wulf Amelung, Lorna Ashton, Ben W J Surridge, John Quinton","doi":"10.1007/s00216-025-05810-6","DOIUrl":null,"url":null,"abstract":"<p><p>Fluorescence microscopy is increasingly seen as a fast, user-friendly, and high-throughput method for detecting microplastics (MPs) in soil; however, its effectiveness across diverse MP types and soil properties remains underexplored. This study tested a fluorescence microscopy-Nile red (NR) staining approach on eight MP types, covering both biodegradable and non-biodegradable plastics, in three size ranges (≤ 150 µm, 100-250 µm, 500-1000 µm) across loamy, clayey, and sandy soils. Each sample, processed in triplicate, underwent a relatively quick and straightforward extraction procedure involving density separation, organic digestion, and NR staining, followed by fluorescence and bright-field microscopy. A new digital image analysis pipeline using Image J was developed to expedite and (semi)automate MP quantification. Recoveries ranged from 80% to 90% for MPs with a Feret diameter of 500-1000 µm, regardless of soil type. In contrast, the recovery of smaller MPs (Feret dia. ≤ 250 µm) varied depending on the soils and plastic types: recoveries for low-density polyethylene (LDPE) reached 85% in sandy soil and 90% in loamy soil, whereas those for biodegradable polybutylene adipate terephthalate/polylactic acid (PBAT/PLA) were only 60% and 10%, respectively. The lowest recovery rate was observed in clayey soil and for biodegradable plastics. The method was tested on non-agricultural soil samples, yielding a MP mean number concentration of 20.7 ± 9.0 MPs/g for MPs sized from dia. ≥ 25 µm, comparable to Fourier transform infrared (FPA-µ-FTIR) results of 13.1 ± 7.3 MPs/g (p > 0.05). We conclude that fluorescence microscopy with NR staining and automated particle quantification offers a time-efficient, reproducible, and accurate method for MP detection in light-textured soils, whereas limitations remain for reliable MP analysis in clay-dominated soils.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards quality-assured measurements of microplastics in soil using fluorescence microscopy.\",\"authors\":\"Quynh Nhu Phan Le, Crispin Halsall, Stoyana Peneva, Olivia Wrigley, Melanie Braun, Wulf Amelung, Lorna Ashton, Ben W J Surridge, John Quinton\",\"doi\":\"10.1007/s00216-025-05810-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fluorescence microscopy is increasingly seen as a fast, user-friendly, and high-throughput method for detecting microplastics (MPs) in soil; however, its effectiveness across diverse MP types and soil properties remains underexplored. This study tested a fluorescence microscopy-Nile red (NR) staining approach on eight MP types, covering both biodegradable and non-biodegradable plastics, in three size ranges (≤ 150 µm, 100-250 µm, 500-1000 µm) across loamy, clayey, and sandy soils. Each sample, processed in triplicate, underwent a relatively quick and straightforward extraction procedure involving density separation, organic digestion, and NR staining, followed by fluorescence and bright-field microscopy. A new digital image analysis pipeline using Image J was developed to expedite and (semi)automate MP quantification. Recoveries ranged from 80% to 90% for MPs with a Feret diameter of 500-1000 µm, regardless of soil type. In contrast, the recovery of smaller MPs (Feret dia. ≤ 250 µm) varied depending on the soils and plastic types: recoveries for low-density polyethylene (LDPE) reached 85% in sandy soil and 90% in loamy soil, whereas those for biodegradable polybutylene adipate terephthalate/polylactic acid (PBAT/PLA) were only 60% and 10%, respectively. The lowest recovery rate was observed in clayey soil and for biodegradable plastics. The method was tested on non-agricultural soil samples, yielding a MP mean number concentration of 20.7 ± 9.0 MPs/g for MPs sized from dia. ≥ 25 µm, comparable to Fourier transform infrared (FPA-µ-FTIR) results of 13.1 ± 7.3 MPs/g (p > 0.05). We conclude that fluorescence microscopy with NR staining and automated particle quantification offers a time-efficient, reproducible, and accurate method for MP detection in light-textured soils, whereas limitations remain for reliable MP analysis in clay-dominated soils.</p>\",\"PeriodicalId\":462,\"journal\":{\"name\":\"Analytical and Bioanalytical Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical and Bioanalytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s00216-025-05810-6\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-025-05810-6","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

荧光显微镜越来越被视为一种快速,用户友好,高通量的方法来检测土壤中的微塑料(MPs);然而,其在不同MP类型和土壤性质中的有效性仍未得到充分探索。本研究测试了荧光显微镜-尼罗红(NR)染色方法,对8种MP类型进行了检测,涵盖了可生物降解和不可生物降解的塑料,在壤土、粘土和沙土中的三个尺寸范围(≤150µm, 100-250µm, 500-1000µm)。每个样品一式三份,经过相对快速和直接的提取过程,包括密度分离、有机消化和NR染色,然后进行荧光和明场显微镜。使用image J开发了一种新的数字图像分析管道,以加快和(半)自动化MP定量。无论土壤类型如何,粒径为500-1000µm的MPs回收率在80% - 90%之间。相比之下,较小的MPs (Feret dia)的恢复。≤250µm)因土壤和塑料类型而异:低密度聚乙烯(LDPE)的回收率在沙土中达到85%,在壤土中达到90%,而可生物降解的聚己二酸丁二酯/聚乳酸(PBAT/PLA)的回收率分别仅为60%和10%。黏性土壤和可生物降解塑料的回收率最低。该方法在非农业土壤样品上进行了测试,从dia大小的MPs平均数量浓度为20.7±9.0 MPs/g。≥25µm,与傅里叶变换红外(FPA-µ- ftir)结果相比为13.1±7.3 MPs/g (p > 0.05)。我们得出的结论是,荧光显微镜与NR染色和自动颗粒定量提供了一种时间效率高、可重复且准确的方法,用于轻质土壤的MP检测,而在粘土占主导地位的土壤中,可靠的MP分析仍然存在局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards quality-assured measurements of microplastics in soil using fluorescence microscopy.

Fluorescence microscopy is increasingly seen as a fast, user-friendly, and high-throughput method for detecting microplastics (MPs) in soil; however, its effectiveness across diverse MP types and soil properties remains underexplored. This study tested a fluorescence microscopy-Nile red (NR) staining approach on eight MP types, covering both biodegradable and non-biodegradable plastics, in three size ranges (≤ 150 µm, 100-250 µm, 500-1000 µm) across loamy, clayey, and sandy soils. Each sample, processed in triplicate, underwent a relatively quick and straightforward extraction procedure involving density separation, organic digestion, and NR staining, followed by fluorescence and bright-field microscopy. A new digital image analysis pipeline using Image J was developed to expedite and (semi)automate MP quantification. Recoveries ranged from 80% to 90% for MPs with a Feret diameter of 500-1000 µm, regardless of soil type. In contrast, the recovery of smaller MPs (Feret dia. ≤ 250 µm) varied depending on the soils and plastic types: recoveries for low-density polyethylene (LDPE) reached 85% in sandy soil and 90% in loamy soil, whereas those for biodegradable polybutylene adipate terephthalate/polylactic acid (PBAT/PLA) were only 60% and 10%, respectively. The lowest recovery rate was observed in clayey soil and for biodegradable plastics. The method was tested on non-agricultural soil samples, yielding a MP mean number concentration of 20.7 ± 9.0 MPs/g for MPs sized from dia. ≥ 25 µm, comparable to Fourier transform infrared (FPA-µ-FTIR) results of 13.1 ± 7.3 MPs/g (p > 0.05). We conclude that fluorescence microscopy with NR staining and automated particle quantification offers a time-efficient, reproducible, and accurate method for MP detection in light-textured soils, whereas limitations remain for reliable MP analysis in clay-dominated soils.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
4.70%
发文量
638
审稿时长
2.1 months
期刊介绍: Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信