{"title":"纳米石墨烯对蛇草纤维/芳纶环氧复合材料介电性能、力学性能和阻燃性能的影响","authors":"Vetrivel Sezhian Muthuvelu, Ashok Kumaresan Gladys, Muthu Praveen Anbukumar, Kishore Dhanasekaran, Elammaran Jayamami","doi":"10.1007/s10965-025-04325-z","DOIUrl":null,"url":null,"abstract":"<div><p>This research intends to explore the impact of nanographene on the dielectric, mechanical, and flame retardation behaviour of fiber composites made of snake grass fiber (SF) and Kevlar. The nanographene was evenly dispersed in the epoxy through sonication. The SF/Kevlar hybrid composites with added graphene were fabricated using compression moulding. Mechanical tests were analyzed, comprising impact, flexural, tensile, and interlaminar shear strength. The mechanical test results showed that the hybrid composites containing 3% nanographene showed an improvement of 40.66%, 46.12%, 37.33%, and 26.58%, respectively. The cracked surfaces after the tensile test were subjected to a micrographic analysis. The micrograph images revealed a strong interaction between the SF/Kevlar fiber and the epoxy, with the addition of nanographene. The dielectric test revealed that adding nanographene enhanced the dielectric loss and dielectric constant. The composite containing 5wt.% nanographene showed a 52% increase in dielectric loss compared to the reference sample. The inclusion of nanographene in SF/Kevlar hybrid epoxy composites reduces the flame propagation speed. The sample with 5 wt.% nanographene showed better performance in flammability studies. The presence of nanographene enhances the thermal resistance of the composite, delaying the ignition and reducing the overall flame spread rate.</p></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":"32 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of nanographene addition on dielectric, mechanical and flame retardation properties of snake grass fiber/kevlar epoxy composites\",\"authors\":\"Vetrivel Sezhian Muthuvelu, Ashok Kumaresan Gladys, Muthu Praveen Anbukumar, Kishore Dhanasekaran, Elammaran Jayamami\",\"doi\":\"10.1007/s10965-025-04325-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research intends to explore the impact of nanographene on the dielectric, mechanical, and flame retardation behaviour of fiber composites made of snake grass fiber (SF) and Kevlar. The nanographene was evenly dispersed in the epoxy through sonication. The SF/Kevlar hybrid composites with added graphene were fabricated using compression moulding. Mechanical tests were analyzed, comprising impact, flexural, tensile, and interlaminar shear strength. The mechanical test results showed that the hybrid composites containing 3% nanographene showed an improvement of 40.66%, 46.12%, 37.33%, and 26.58%, respectively. The cracked surfaces after the tensile test were subjected to a micrographic analysis. The micrograph images revealed a strong interaction between the SF/Kevlar fiber and the epoxy, with the addition of nanographene. The dielectric test revealed that adding nanographene enhanced the dielectric loss and dielectric constant. The composite containing 5wt.% nanographene showed a 52% increase in dielectric loss compared to the reference sample. The inclusion of nanographene in SF/Kevlar hybrid epoxy composites reduces the flame propagation speed. The sample with 5 wt.% nanographene showed better performance in flammability studies. The presence of nanographene enhances the thermal resistance of the composite, delaying the ignition and reducing the overall flame spread rate.</p></div>\",\"PeriodicalId\":658,\"journal\":{\"name\":\"Journal of Polymer Research\",\"volume\":\"32 3\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymer Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10965-025-04325-z\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10965-025-04325-z","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Effect of nanographene addition on dielectric, mechanical and flame retardation properties of snake grass fiber/kevlar epoxy composites
This research intends to explore the impact of nanographene on the dielectric, mechanical, and flame retardation behaviour of fiber composites made of snake grass fiber (SF) and Kevlar. The nanographene was evenly dispersed in the epoxy through sonication. The SF/Kevlar hybrid composites with added graphene were fabricated using compression moulding. Mechanical tests were analyzed, comprising impact, flexural, tensile, and interlaminar shear strength. The mechanical test results showed that the hybrid composites containing 3% nanographene showed an improvement of 40.66%, 46.12%, 37.33%, and 26.58%, respectively. The cracked surfaces after the tensile test were subjected to a micrographic analysis. The micrograph images revealed a strong interaction between the SF/Kevlar fiber and the epoxy, with the addition of nanographene. The dielectric test revealed that adding nanographene enhanced the dielectric loss and dielectric constant. The composite containing 5wt.% nanographene showed a 52% increase in dielectric loss compared to the reference sample. The inclusion of nanographene in SF/Kevlar hybrid epoxy composites reduces the flame propagation speed. The sample with 5 wt.% nanographene showed better performance in flammability studies. The presence of nanographene enhances the thermal resistance of the composite, delaying the ignition and reducing the overall flame spread rate.
期刊介绍:
Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology.
As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology, including:
polymer synthesis;
polymer reactions;
polymerization kinetics;
polymer physics;
morphology;
structure-property relationships;
polymer analysis and characterization;
physical and mechanical properties;
electrical and optical properties;
polymer processing and rheology;
application of polymers;
supramolecular science of polymers;
polymer composites.