{"title":"VisDist-Net:一种新的轻量级水果新鲜度分类模型","authors":"Semih Demirel, Oktay Yıldız","doi":"10.1007/s12161-024-02716-4","DOIUrl":null,"url":null,"abstract":"<div><p>Agricultural production is of vital importance for humanity and the agricultural economy. Enhancing food security in agriculture can increase agricultural production and also help alleviate food scarcity. Also, the early detection of plant diseases can be crucial for quality agricultural products. The use of embedded software in Internet of Things devices for quality control processes has become quite widespread. These software applications require lightweight models. Therefore, a new model named the vision distillation network (VisDist-Net) has been developed to address real-world problems in agricultural production. This model aims to increase agricultural productivity by classifying three different fruits as rotten and fresh. An open-source dataset was used for this classification. VisDist-Net is a model created based on knowledge distillation. In the VisDist-Net model, knowledge is distilled from a vision transformer to a hybrid convolutional neural network (cnn). The strengths of both models have been combined by creating a hybrid student convolutional neural network through the fusion of feature vectors from resnet18 and mobilenetv1 models. This distillation process enables the creation of a high-performance lightweight model suitable for real-world applications. The VisDist-Net model has yielded quite promising results in this endeavor, achieving an f1-score of 0.9945 and an area under the curve (AUC) score of 0.9967.</p></div>","PeriodicalId":561,"journal":{"name":"Food Analytical Methods","volume":"18 2","pages":"229 - 244"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VisDist-Net: A New Lightweight Model for Fruit Freshness Classification\",\"authors\":\"Semih Demirel, Oktay Yıldız\",\"doi\":\"10.1007/s12161-024-02716-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Agricultural production is of vital importance for humanity and the agricultural economy. Enhancing food security in agriculture can increase agricultural production and also help alleviate food scarcity. Also, the early detection of plant diseases can be crucial for quality agricultural products. The use of embedded software in Internet of Things devices for quality control processes has become quite widespread. These software applications require lightweight models. Therefore, a new model named the vision distillation network (VisDist-Net) has been developed to address real-world problems in agricultural production. This model aims to increase agricultural productivity by classifying three different fruits as rotten and fresh. An open-source dataset was used for this classification. VisDist-Net is a model created based on knowledge distillation. In the VisDist-Net model, knowledge is distilled from a vision transformer to a hybrid convolutional neural network (cnn). The strengths of both models have been combined by creating a hybrid student convolutional neural network through the fusion of feature vectors from resnet18 and mobilenetv1 models. This distillation process enables the creation of a high-performance lightweight model suitable for real-world applications. The VisDist-Net model has yielded quite promising results in this endeavor, achieving an f1-score of 0.9945 and an area under the curve (AUC) score of 0.9967.</p></div>\",\"PeriodicalId\":561,\"journal\":{\"name\":\"Food Analytical Methods\",\"volume\":\"18 2\",\"pages\":\"229 - 244\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Analytical Methods\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12161-024-02716-4\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Analytical Methods","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s12161-024-02716-4","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
VisDist-Net: A New Lightweight Model for Fruit Freshness Classification
Agricultural production is of vital importance for humanity and the agricultural economy. Enhancing food security in agriculture can increase agricultural production and also help alleviate food scarcity. Also, the early detection of plant diseases can be crucial for quality agricultural products. The use of embedded software in Internet of Things devices for quality control processes has become quite widespread. These software applications require lightweight models. Therefore, a new model named the vision distillation network (VisDist-Net) has been developed to address real-world problems in agricultural production. This model aims to increase agricultural productivity by classifying three different fruits as rotten and fresh. An open-source dataset was used for this classification. VisDist-Net is a model created based on knowledge distillation. In the VisDist-Net model, knowledge is distilled from a vision transformer to a hybrid convolutional neural network (cnn). The strengths of both models have been combined by creating a hybrid student convolutional neural network through the fusion of feature vectors from resnet18 and mobilenetv1 models. This distillation process enables the creation of a high-performance lightweight model suitable for real-world applications. The VisDist-Net model has yielded quite promising results in this endeavor, achieving an f1-score of 0.9945 and an area under the curve (AUC) score of 0.9967.
期刊介绍:
Food Analytical Methods publishes original articles, review articles, and notes on novel and/or state-of-the-art analytical methods or issues to be solved, as well as significant improvements or interesting applications to existing methods. These include analytical technology and methodology for food microbial contaminants, food chemistry and toxicology, food quality, food authenticity and food traceability. The journal covers fundamental and specific aspects of the development, optimization, and practical implementation in routine laboratories, and validation of food analytical methods for the monitoring of food safety and quality.