超高性能混凝土环箍约束钢筋混凝土柱轴压性能数值模拟分析

IF 2.2 3区 工程技术 Q2 MECHANICS
Jia Rong Zhao, Yu Qin Long, Cong Chun Chen, Xiao Liu, Qian Wan, Wei Zhang
{"title":"超高性能混凝土环箍约束钢筋混凝土柱轴压性能数值模拟分析","authors":"Jia Rong Zhao,&nbsp;Yu Qin Long,&nbsp;Cong Chun Chen,&nbsp;Xiao Liu,&nbsp;Qian Wan,&nbsp;Wei Zhang","doi":"10.1007/s00419-025-02780-0","DOIUrl":null,"url":null,"abstract":"<div><p>To investigate the axial compressive behavior of reinforced concrete (RC) square columns enhanced with ultra-high-performance concrete (UHPC) under specific conditions, a composite column model comprising \"UHPC + steel mesh\" was developed using finite element analysis software. This approach distinguishes between confined and unconfined zones within the column. The study examined the effects of UHPC shell thickness, longitudinal bar spacing, and stirrup spacing on the axial compression characteristics, failure mechanisms, and load-bearing capacity of RC square columns. The results indicate that increasing the thickness of the UHPC shell significantly enhances load capacity from 2172 kN to 5132 kN while concurrently reducing ductility. In contrast, reducing stirrup spacing has a minimal effect, yielding an increase in load capacity of only 806 kN. Adjusting the longitudinal rib spacing greatly enhances ductility while concurrently achieving a comparable increase in load capacity, namely by 704 kN. The suggested calculation model for the RC was theoretically validated against the restricted concrete theory and shown strong concordance with experimental data.</p></div>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":"95 3","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation analysis of the axial compressive performance of UHPC hoop-restrained reinforced concrete columns\",\"authors\":\"Jia Rong Zhao,&nbsp;Yu Qin Long,&nbsp;Cong Chun Chen,&nbsp;Xiao Liu,&nbsp;Qian Wan,&nbsp;Wei Zhang\",\"doi\":\"10.1007/s00419-025-02780-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To investigate the axial compressive behavior of reinforced concrete (RC) square columns enhanced with ultra-high-performance concrete (UHPC) under specific conditions, a composite column model comprising \\\"UHPC + steel mesh\\\" was developed using finite element analysis software. This approach distinguishes between confined and unconfined zones within the column. The study examined the effects of UHPC shell thickness, longitudinal bar spacing, and stirrup spacing on the axial compression characteristics, failure mechanisms, and load-bearing capacity of RC square columns. The results indicate that increasing the thickness of the UHPC shell significantly enhances load capacity from 2172 kN to 5132 kN while concurrently reducing ductility. In contrast, reducing stirrup spacing has a minimal effect, yielding an increase in load capacity of only 806 kN. Adjusting the longitudinal rib spacing greatly enhances ductility while concurrently achieving a comparable increase in load capacity, namely by 704 kN. The suggested calculation model for the RC was theoretically validated against the restricted concrete theory and shown strong concordance with experimental data.</p></div>\",\"PeriodicalId\":477,\"journal\":{\"name\":\"Archive of Applied Mechanics\",\"volume\":\"95 3\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive of Applied Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00419-025-02780-0\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive of Applied Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00419-025-02780-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

为研究超高性能混凝土(UHPC)增强钢筋混凝土(RC)方柱在特定条件下的轴压性能,利用有限元分析软件建立了“UHPC +钢网”组合柱模型。这种方法区分了柱内的承压区和非承压区。研究了UHPC壳厚、纵筋间距和箍筋间距对RC方柱轴压特性、破坏机制和承载能力的影响。结果表明:增加UHPC壳层厚度可将承载能力从2172 kN显著提高到5132 kN,同时降低延性;相比之下,减小箍条间距的影响很小,仅增加了806 kN的承载能力。调整纵肋间距大大提高了延性,同时实现了承载能力的相应增加,即704 kN。本文提出的钢筋混凝土计算模型与限制混凝土理论进行了理论验证,与试验数据具有较强的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Numerical simulation analysis of the axial compressive performance of UHPC hoop-restrained reinforced concrete columns

Numerical simulation analysis of the axial compressive performance of UHPC hoop-restrained reinforced concrete columns

To investigate the axial compressive behavior of reinforced concrete (RC) square columns enhanced with ultra-high-performance concrete (UHPC) under specific conditions, a composite column model comprising "UHPC + steel mesh" was developed using finite element analysis software. This approach distinguishes between confined and unconfined zones within the column. The study examined the effects of UHPC shell thickness, longitudinal bar spacing, and stirrup spacing on the axial compression characteristics, failure mechanisms, and load-bearing capacity of RC square columns. The results indicate that increasing the thickness of the UHPC shell significantly enhances load capacity from 2172 kN to 5132 kN while concurrently reducing ductility. In contrast, reducing stirrup spacing has a minimal effect, yielding an increase in load capacity of only 806 kN. Adjusting the longitudinal rib spacing greatly enhances ductility while concurrently achieving a comparable increase in load capacity, namely by 704 kN. The suggested calculation model for the RC was theoretically validated against the restricted concrete theory and shown strong concordance with experimental data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
10.70%
发文量
234
审稿时长
4-8 weeks
期刊介绍: Archive of Applied Mechanics serves as a platform to communicate original research of scholarly value in all branches of theoretical and applied mechanics, i.e., in solid and fluid mechanics, dynamics and vibrations. It focuses on continuum mechanics in general, structural mechanics, biomechanics, micro- and nano-mechanics as well as hydrodynamics. In particular, the following topics are emphasised: thermodynamics of materials, material modeling, multi-physics, mechanical properties of materials, homogenisation, phase transitions, fracture and damage mechanics, vibration, wave propagation experimental mechanics as well as machine learning techniques in the context of applied mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信