用中子粉末衍射法研究准二维碲化Li2Ni2TeO6的磁性有序特征

IF 1.7 4区 物理与天体物理 Q3 PHYSICS, APPLIED
A. I. Kurbakov, N. S. Fokin, A. E. Susloparova
{"title":"用中子粉末衍射法研究准二维碲化Li2Ni2TeO6的磁性有序特征","authors":"A. I. Kurbakov,&nbsp;N. S. Fokin,&nbsp;A. E. Susloparova","doi":"10.1007/s10948-025-06938-3","DOIUrl":null,"url":null,"abstract":"<div><p>The features of the crystal structure and spin order in the ground state of two samples of layered honeycomb oxides of the same stoichiometric composition Li<sub>2</sub>Ni<sub>2</sub>TeO<sub>6</sub> were established by the neutron powder diffraction method. These samples were synthesized by the ion-exchange method from different precursors, Na<sub>2</sub>Ni<sub>2</sub>TeO<sub>6</sub> and K<sub>2</sub>Ni<sub>2</sub>TeO<sub>6</sub>, having a similar crystal structure, hexagonal space group <i>P6</i><sub><i>3</i></sub><i>/mcm</i>, but with a significant difference in the distances between the layers. Both Li<sub>2</sub>Ni<sub>2</sub>TeO<sub>6</sub> samples do not retain the structure of the precursors and crystallize into the orthorhombic space group <i>Cmca</i>, with very minor differences in the unit cell parameters. While Li<sub>2</sub>Ni<sub>2</sub>TeO<sub>6</sub> from the potassium precursor is single-phase, the sample from the sodium precursor appears to be a mixture of two crystal modifications. Its main phase is crystallized in <i>Cmca</i>, and the second phase, 13.6 wt.%, with the same Li<sub>2</sub>Ni<sub>2</sub>TeO<sub>6</sub> stoichiometry, is more deformed, with monoclinic distortions described by the <i>C2/m</i> space group. The values of the fragments of the fine crystal structure have been calculated. The coherent coupling of the two phases at the unit cell level was shown. The magnetic structures of the investigated samples in the ordered magnetic state at <i>T</i> = 1.5 K have been determined and described in details. A relatively small incommensurability of the magnetic structure is manifested across all three crystallographic directions. The magnetic propagation vector can be represented as <i>k</i> = (1/2-δ<sub>1</sub>, 1/2-δ<sub>2</sub>, 1/2-δ<sub>3</sub>) at small values of δ, i.e., the magnetic unit cell is almost doubled in relation to the crystallographic one. The magnetic order is three-dimensional and represents an antiferromagnetic ordering of magnetic Ni ions in honeycomb <i>ab</i> planes of the stripe type with magnetic moments coming out of the honeycomb plane. The influence of the presence of a mixture of phases of stoichiometric composition but different crystal structures on the magnetic ordering of Li<sub>2</sub>Ni<sub>2</sub>TeO<sub>6</sub> has been studied.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"38 2","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of Magnetic Ordering Features in Quasi-Two-Dimensional Li2Ni2TeO6 Tellurate Using the Neutron Powder Diffraction Method\",\"authors\":\"A. I. Kurbakov,&nbsp;N. S. Fokin,&nbsp;A. E. Susloparova\",\"doi\":\"10.1007/s10948-025-06938-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The features of the crystal structure and spin order in the ground state of two samples of layered honeycomb oxides of the same stoichiometric composition Li<sub>2</sub>Ni<sub>2</sub>TeO<sub>6</sub> were established by the neutron powder diffraction method. These samples were synthesized by the ion-exchange method from different precursors, Na<sub>2</sub>Ni<sub>2</sub>TeO<sub>6</sub> and K<sub>2</sub>Ni<sub>2</sub>TeO<sub>6</sub>, having a similar crystal structure, hexagonal space group <i>P6</i><sub><i>3</i></sub><i>/mcm</i>, but with a significant difference in the distances between the layers. Both Li<sub>2</sub>Ni<sub>2</sub>TeO<sub>6</sub> samples do not retain the structure of the precursors and crystallize into the orthorhombic space group <i>Cmca</i>, with very minor differences in the unit cell parameters. While Li<sub>2</sub>Ni<sub>2</sub>TeO<sub>6</sub> from the potassium precursor is single-phase, the sample from the sodium precursor appears to be a mixture of two crystal modifications. Its main phase is crystallized in <i>Cmca</i>, and the second phase, 13.6 wt.%, with the same Li<sub>2</sub>Ni<sub>2</sub>TeO<sub>6</sub> stoichiometry, is more deformed, with monoclinic distortions described by the <i>C2/m</i> space group. The values of the fragments of the fine crystal structure have been calculated. The coherent coupling of the two phases at the unit cell level was shown. The magnetic structures of the investigated samples in the ordered magnetic state at <i>T</i> = 1.5 K have been determined and described in details. A relatively small incommensurability of the magnetic structure is manifested across all three crystallographic directions. The magnetic propagation vector can be represented as <i>k</i> = (1/2-δ<sub>1</sub>, 1/2-δ<sub>2</sub>, 1/2-δ<sub>3</sub>) at small values of δ, i.e., the magnetic unit cell is almost doubled in relation to the crystallographic one. The magnetic order is three-dimensional and represents an antiferromagnetic ordering of magnetic Ni ions in honeycomb <i>ab</i> planes of the stripe type with magnetic moments coming out of the honeycomb plane. The influence of the presence of a mixture of phases of stoichiometric composition but different crystal structures on the magnetic ordering of Li<sub>2</sub>Ni<sub>2</sub>TeO<sub>6</sub> has been studied.</p></div>\",\"PeriodicalId\":669,\"journal\":{\"name\":\"Journal of Superconductivity and Novel Magnetism\",\"volume\":\"38 2\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Superconductivity and Novel Magnetism\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10948-025-06938-3\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-025-06938-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

用中子粉末衍射法测定了具有相同化学计量成分的两种层状蜂窝氧化物Li2Ni2TeO6的晶体结构特征和基态自旋顺序。这些样品是由Na2Ni2TeO6和K2Ni2TeO6两种不同的前驱体通过离子交换法合成的,具有相似的晶体结构,均为P63/mcm的六方空间基团,但层间距离有显著差异。两种Li2Ni2TeO6样品都不保留前体的结构,结晶成正交空间基Cmca,单位胞参数差异很小。而来自钾前驱体的Li2Ni2TeO6是单相的,来自钠前驱体的样品似乎是两种晶体修饰的混合物。它的主相在Cmca中结晶,第二相,13.6 wt.%,具有相同的Li2Ni2TeO6化学计量,变形更大,具有单斜畸变,由C2/m空间群描述。对细晶结构的碎片进行了数值计算。显示了两相在单位细胞水平上的相干耦合。在T = 1.5 K时,测定并详细描述了所研究样品在有序磁态下的磁性结构。磁性结构的相对较小的不可通约性在所有三个晶体学方向上都表现出来。在较小的δ值下,磁传播矢量可以表示为k = (1/2-δ 1,1 /2-δ 2,1 /2-δ3),即磁性单位胞几乎是晶体学单位胞的两倍。磁序是三维的,表示磁性Ni离子在蜂窝ab平面上的一种反铁磁序,其磁矩从蜂窝平面出来。研究了不同晶体结构的化学计量相混合存在对Li2Ni2TeO6磁性有序性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of Magnetic Ordering Features in Quasi-Two-Dimensional Li2Ni2TeO6 Tellurate Using the Neutron Powder Diffraction Method

The features of the crystal structure and spin order in the ground state of two samples of layered honeycomb oxides of the same stoichiometric composition Li2Ni2TeO6 were established by the neutron powder diffraction method. These samples were synthesized by the ion-exchange method from different precursors, Na2Ni2TeO6 and K2Ni2TeO6, having a similar crystal structure, hexagonal space group P63/mcm, but with a significant difference in the distances between the layers. Both Li2Ni2TeO6 samples do not retain the structure of the precursors and crystallize into the orthorhombic space group Cmca, with very minor differences in the unit cell parameters. While Li2Ni2TeO6 from the potassium precursor is single-phase, the sample from the sodium precursor appears to be a mixture of two crystal modifications. Its main phase is crystallized in Cmca, and the second phase, 13.6 wt.%, with the same Li2Ni2TeO6 stoichiometry, is more deformed, with monoclinic distortions described by the C2/m space group. The values of the fragments of the fine crystal structure have been calculated. The coherent coupling of the two phases at the unit cell level was shown. The magnetic structures of the investigated samples in the ordered magnetic state at T = 1.5 K have been determined and described in details. A relatively small incommensurability of the magnetic structure is manifested across all three crystallographic directions. The magnetic propagation vector can be represented as k = (1/2-δ1, 1/2-δ2, 1/2-δ3) at small values of δ, i.e., the magnetic unit cell is almost doubled in relation to the crystallographic one. The magnetic order is three-dimensional and represents an antiferromagnetic ordering of magnetic Ni ions in honeycomb ab planes of the stripe type with magnetic moments coming out of the honeycomb plane. The influence of the presence of a mixture of phases of stoichiometric composition but different crystal structures on the magnetic ordering of Li2Ni2TeO6 has been studied.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Superconductivity and Novel Magnetism
Journal of Superconductivity and Novel Magnetism 物理-物理:凝聚态物理
CiteScore
3.70
自引率
11.10%
发文量
342
审稿时长
3.5 months
期刊介绍: The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信