{"title":"利用Hermite小波和Haar小波的共逼近小波","authors":"H. Mazaheri, M. Kalantari, S. M. Jesmani","doi":"10.1007/s40995-024-01772-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider wavelet coapproximation in Hermite wavelets and Haar wavelets. At first, we define wavelet coapproximation of a function with concerning a set. We show that if the series <span>\\(\\sum _{n=0}^{\\infty }\\sum _{m=0}^{\\infty }|t_{n,m}|^2\\)</span> is convergent, then there exists a wavelet coapproximation for a set.</p></div>","PeriodicalId":600,"journal":{"name":"Iranian Journal of Science and Technology, Transactions A: Science","volume":"49 2","pages":"505 - 510"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coapproximation Wavelet Using Hermite Wavelets and Haar Wavelets\",\"authors\":\"H. Mazaheri, M. Kalantari, S. M. Jesmani\",\"doi\":\"10.1007/s40995-024-01772-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider wavelet coapproximation in Hermite wavelets and Haar wavelets. At first, we define wavelet coapproximation of a function with concerning a set. We show that if the series <span>\\\\(\\\\sum _{n=0}^{\\\\infty }\\\\sum _{m=0}^{\\\\infty }|t_{n,m}|^2\\\\)</span> is convergent, then there exists a wavelet coapproximation for a set.</p></div>\",\"PeriodicalId\":600,\"journal\":{\"name\":\"Iranian Journal of Science and Technology, Transactions A: Science\",\"volume\":\"49 2\",\"pages\":\"505 - 510\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Science and Technology, Transactions A: Science\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40995-024-01772-z\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology, Transactions A: Science","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s40995-024-01772-z","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Coapproximation Wavelet Using Hermite Wavelets and Haar Wavelets
In this paper, we consider wavelet coapproximation in Hermite wavelets and Haar wavelets. At first, we define wavelet coapproximation of a function with concerning a set. We show that if the series \(\sum _{n=0}^{\infty }\sum _{m=0}^{\infty }|t_{n,m}|^2\) is convergent, then there exists a wavelet coapproximation for a set.
期刊介绍:
The aim of this journal is to foster the growth of scientific research among Iranian scientists and to provide a medium which brings the fruits of their research to the attention of the world’s scientific community. The journal publishes original research findings – which may be theoretical, experimental or both - reviews, techniques, and comments spanning all subjects in the field of basic sciences, including Physics, Chemistry, Mathematics, Statistics, Biology and Earth Sciences