用氧化石墨烯/氧化石墨烯纳米复合材料†快速检测和可见光催化降解水中氯霉素

IF 2.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Kamalpreet Kaur, Tarab Akhtar, Gagandeep Singh, Navneet Kaur and Narinder Singh
{"title":"用氧化石墨烯/氧化石墨烯纳米复合材料†快速检测和可见光催化降解水中氯霉素","authors":"Kamalpreet Kaur, Tarab Akhtar, Gagandeep Singh, Navneet Kaur and Narinder Singh","doi":"10.1039/D4NJ05369A","DOIUrl":null,"url":null,"abstract":"<p >Nanoscale materials employed in the electrochemical detection of chloramphenicol (CAP) have attracted significant research attention due to concerns regarding antibiotic residue detection in water and food products, associated with widespread contamination of water reservoirs by human and veterinary waste. Graphene-based materials are especially intriguing because of their π–π interactions. In the present work, <strong>CoAl<small><sub>2</sub></small>O<small><sub>4</sub></small></strong> and reduced graphene oxide (<strong>rGO</strong>) have been used to modify glassy carbon electrodes (<strong>GCEs</strong>). The synthesized <strong>CoAl<small><sub>2</sub></small>O<small><sub>4</sub></small>/rGO</strong> nanocomposite was characterized through various techniques such as XPS, FE-SEM, EDS, Raman spectroscopy, FTIR, and HR-TEM. The electrochemical performance of <strong>CoAl<small><sub>2</sub></small>O<small><sub>4</sub></small>/rGO</strong> for CAP determination was evaluated using cyclic voltammetry (CV), differential pulse voltammetry (DPV), linear sweep voltammetry, and chronoamperometry techniques. The <strong>CoAl<small><sub>2</sub></small>O<small><sub>4</sub></small>/rGO</strong> exhibited linear detection limit = 13.5 nM, limit of quantification = 19.34 nM, and sensitivity = 1.1505 μA μM<small><sup>−1</sup></small> cm<small><sup>−2</sup></small> with a linear calibration equation of <em>I</em><small><sub>pc</sub></small> (μA) = 0.3895[CAP]/(μM) + 0.1599 having <em>R</em><small><sup>2</sup></small> = 0.9957. Additionally, <strong>CoAl<small><sub>2</sub></small>O<small><sub>4</sub></small>/rGO</strong> showed excellent selectivity and anti-interference towards CAP recognition. The <strong>CoAl<small><sub>2</sub></small>O<small><sub>4</sub></small>/rGO</strong> showed promising potential for CAP analysis in tap water, river water, and pharmaceutical wastewater with good % recovery rates. Moreover, the <strong>CoAl<small><sub>2</sub></small>O<small><sub>4</sub></small>/rGO</strong> nanocomposite is an efficient catalyst for the photodegradation of CAP as revealed by the UV-vis spectroscopy results, which showed that the <strong>CoAl<small><sub>2</sub></small>O<small><sub>4</sub></small>/rGO</strong> nanocomposite exhibits 100% CAP degradation efficiency within 80 min under natural sunlight and displays good stability and reusability of the catalyst.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 11","pages":" 4668-4681"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid detection and visible light driven photocatalytic degradation of chloramphenicol in aqueous medium using a CoAl2O4/rGO nanocomposite†\",\"authors\":\"Kamalpreet Kaur, Tarab Akhtar, Gagandeep Singh, Navneet Kaur and Narinder Singh\",\"doi\":\"10.1039/D4NJ05369A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Nanoscale materials employed in the electrochemical detection of chloramphenicol (CAP) have attracted significant research attention due to concerns regarding antibiotic residue detection in water and food products, associated with widespread contamination of water reservoirs by human and veterinary waste. Graphene-based materials are especially intriguing because of their π–π interactions. In the present work, <strong>CoAl<small><sub>2</sub></small>O<small><sub>4</sub></small></strong> and reduced graphene oxide (<strong>rGO</strong>) have been used to modify glassy carbon electrodes (<strong>GCEs</strong>). The synthesized <strong>CoAl<small><sub>2</sub></small>O<small><sub>4</sub></small>/rGO</strong> nanocomposite was characterized through various techniques such as XPS, FE-SEM, EDS, Raman spectroscopy, FTIR, and HR-TEM. The electrochemical performance of <strong>CoAl<small><sub>2</sub></small>O<small><sub>4</sub></small>/rGO</strong> for CAP determination was evaluated using cyclic voltammetry (CV), differential pulse voltammetry (DPV), linear sweep voltammetry, and chronoamperometry techniques. The <strong>CoAl<small><sub>2</sub></small>O<small><sub>4</sub></small>/rGO</strong> exhibited linear detection limit = 13.5 nM, limit of quantification = 19.34 nM, and sensitivity = 1.1505 μA μM<small><sup>−1</sup></small> cm<small><sup>−2</sup></small> with a linear calibration equation of <em>I</em><small><sub>pc</sub></small> (μA) = 0.3895[CAP]/(μM) + 0.1599 having <em>R</em><small><sup>2</sup></small> = 0.9957. Additionally, <strong>CoAl<small><sub>2</sub></small>O<small><sub>4</sub></small>/rGO</strong> showed excellent selectivity and anti-interference towards CAP recognition. The <strong>CoAl<small><sub>2</sub></small>O<small><sub>4</sub></small>/rGO</strong> showed promising potential for CAP analysis in tap water, river water, and pharmaceutical wastewater with good % recovery rates. Moreover, the <strong>CoAl<small><sub>2</sub></small>O<small><sub>4</sub></small>/rGO</strong> nanocomposite is an efficient catalyst for the photodegradation of CAP as revealed by the UV-vis spectroscopy results, which showed that the <strong>CoAl<small><sub>2</sub></small>O<small><sub>4</sub></small>/rGO</strong> nanocomposite exhibits 100% CAP degradation efficiency within 80 min under natural sunlight and displays good stability and reusability of the catalyst.</p>\",\"PeriodicalId\":95,\"journal\":{\"name\":\"New Journal of Chemistry\",\"volume\":\" 11\",\"pages\":\" 4668-4681\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d4nj05369a\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d4nj05369a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于水和食品中抗生素残留的检测与人类和兽医废物对水库的广泛污染有关,纳米材料用于氯霉素(CAP)的电化学检测引起了极大的研究关注。石墨烯基材料特别有趣,因为它们具有π -π相互作用。在本研究中,我们使用了CoAl2O4和还原氧化石墨烯(rGO)来修饰玻碳电极(gce)。通过XPS、FE-SEM、EDS、拉曼光谱、FTIR和HR-TEM等技术对合成的CoAl2O4/rGO纳米复合材料进行了表征。采用循环伏安法(CV)、差分脉冲伏安法(DPV)、线性扫描伏安法(线性扫描伏安法)和计时伏安法评价了用于CAP测定的CoAl2O4/rGO的电化学性能。该样品的线性检出限为13.5 nM,定量限为19.34 nM,灵敏度为1.1505 μA μM−1 cm−2,线性校准方程为Ipc (μA) = 0.3895[CAP]/(μM) + 0.1599, R2 = 0.9957。此外,对CAP识别,CoAl2O4/rGO表现出良好的选择性和抗干扰性。在自来水、河水和制药废水的CAP分析中,CoAl2O4/rGO具有良好的回收率。紫外-可见光谱结果表明,该纳米复合材料在自然光照射下80 min内对CAP的降解效率为100%,且具有良好的稳定性和可重复使用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rapid detection and visible light driven photocatalytic degradation of chloramphenicol in aqueous medium using a CoAl2O4/rGO nanocomposite†

Rapid detection and visible light driven photocatalytic degradation of chloramphenicol in aqueous medium using a CoAl2O4/rGO nanocomposite†

Nanoscale materials employed in the electrochemical detection of chloramphenicol (CAP) have attracted significant research attention due to concerns regarding antibiotic residue detection in water and food products, associated with widespread contamination of water reservoirs by human and veterinary waste. Graphene-based materials are especially intriguing because of their π–π interactions. In the present work, CoAl2O4 and reduced graphene oxide (rGO) have been used to modify glassy carbon electrodes (GCEs). The synthesized CoAl2O4/rGO nanocomposite was characterized through various techniques such as XPS, FE-SEM, EDS, Raman spectroscopy, FTIR, and HR-TEM. The electrochemical performance of CoAl2O4/rGO for CAP determination was evaluated using cyclic voltammetry (CV), differential pulse voltammetry (DPV), linear sweep voltammetry, and chronoamperometry techniques. The CoAl2O4/rGO exhibited linear detection limit = 13.5 nM, limit of quantification = 19.34 nM, and sensitivity = 1.1505 μA μM−1 cm−2 with a linear calibration equation of Ipc (μA) = 0.3895[CAP]/(μM) + 0.1599 having R2 = 0.9957. Additionally, CoAl2O4/rGO showed excellent selectivity and anti-interference towards CAP recognition. The CoAl2O4/rGO showed promising potential for CAP analysis in tap water, river water, and pharmaceutical wastewater with good % recovery rates. Moreover, the CoAl2O4/rGO nanocomposite is an efficient catalyst for the photodegradation of CAP as revealed by the UV-vis spectroscopy results, which showed that the CoAl2O4/rGO nanocomposite exhibits 100% CAP degradation efficiency within 80 min under natural sunlight and displays good stability and reusability of the catalyst.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信