Ag纳米颗粒修饰空心管In2O3增强光催化氮还原为氨†

IF 2.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Yang Yang, Mengyao Tan, Xiaoman Li and Min Luo
{"title":"Ag纳米颗粒修饰空心管In2O3增强光催化氮还原为氨†","authors":"Yang Yang, Mengyao Tan, Xiaoman Li and Min Luo","doi":"10.1039/D4NJ05447D","DOIUrl":null,"url":null,"abstract":"<p >The photocatalytic nitrogen reduction reaction provides an alternative process for nitrogen cycling and ammonia (NH<small><sub>3</sub></small>) production under mild conditions. Herein, we have synthesized Ag-loaded In<small><sub>2</sub></small>O<small><sub>3</sub></small> (Ag@In<small><sub>2</sub></small>O<small><sub>3</sub></small>-<em>X</em>) by solvothermal and photoreduction methods. The introduction of Ag significantly alters the band structure of In<small><sub>2</sub></small>O<small><sub>3</sub></small>, resulting in a slight reduction in the band gap and a more negative conduction band position, thereby facilitating the generation of reductive electrons in In<small><sub>2</sub></small>O<small><sub>3</sub></small>. Moreover, the synergistic interaction between loaded Ag nanoparticles and In<small><sub>2</sub></small>O<small><sub>3</sub></small> forms a Schottky barrier, which widens the light absorption range and promotes charge separation. Under simulated sunlight, the photocatalytic nitrogen fixation performance of Ag@In<small><sub>2</sub></small>O<small><sub>3</sub></small>-5 reaches 35.56 μmol h<small><sup>−1</sup></small> g<small><sub>cat</sub></small><small><sup>−1</sup></small>, which is higher than other composites and 3.58 times that of pure In<small><sub>2</sub></small>O<small><sub>3</sub></small>. At the same time, the catalyst has good structural stability and cycle life. Density functional theory (DFT) calculations demonstrate that Ag exhibits a stronger interaction with N<small><sub>2</sub></small> and lowers the potential barrier of the N<small><sub>2</sub></small> hydrogenation reaction. The synergistic effect between precious metals and semiconductors offers novel insights and presents challenges for the photocatalytic N<small><sub>2</sub></small> fixation process. This work provides new insights and challenges for designing and synthesizing nanomaterials for photocatalytic nitrogen fixation.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 11","pages":" 4580-4589"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ag nanoparticles modified hollow tubular In2O3 for enhanced photocatalytic nitrogen reduction to ammonia†\",\"authors\":\"Yang Yang, Mengyao Tan, Xiaoman Li and Min Luo\",\"doi\":\"10.1039/D4NJ05447D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The photocatalytic nitrogen reduction reaction provides an alternative process for nitrogen cycling and ammonia (NH<small><sub>3</sub></small>) production under mild conditions. Herein, we have synthesized Ag-loaded In<small><sub>2</sub></small>O<small><sub>3</sub></small> (Ag@In<small><sub>2</sub></small>O<small><sub>3</sub></small>-<em>X</em>) by solvothermal and photoreduction methods. The introduction of Ag significantly alters the band structure of In<small><sub>2</sub></small>O<small><sub>3</sub></small>, resulting in a slight reduction in the band gap and a more negative conduction band position, thereby facilitating the generation of reductive electrons in In<small><sub>2</sub></small>O<small><sub>3</sub></small>. Moreover, the synergistic interaction between loaded Ag nanoparticles and In<small><sub>2</sub></small>O<small><sub>3</sub></small> forms a Schottky barrier, which widens the light absorption range and promotes charge separation. Under simulated sunlight, the photocatalytic nitrogen fixation performance of Ag@In<small><sub>2</sub></small>O<small><sub>3</sub></small>-5 reaches 35.56 μmol h<small><sup>−1</sup></small> g<small><sub>cat</sub></small><small><sup>−1</sup></small>, which is higher than other composites and 3.58 times that of pure In<small><sub>2</sub></small>O<small><sub>3</sub></small>. At the same time, the catalyst has good structural stability and cycle life. Density functional theory (DFT) calculations demonstrate that Ag exhibits a stronger interaction with N<small><sub>2</sub></small> and lowers the potential barrier of the N<small><sub>2</sub></small> hydrogenation reaction. The synergistic effect between precious metals and semiconductors offers novel insights and presents challenges for the photocatalytic N<small><sub>2</sub></small> fixation process. This work provides new insights and challenges for designing and synthesizing nanomaterials for photocatalytic nitrogen fixation.</p>\",\"PeriodicalId\":95,\"journal\":{\"name\":\"New Journal of Chemistry\",\"volume\":\" 11\",\"pages\":\" 4580-4589\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d4nj05447d\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d4nj05447d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

光催化氮还原反应在温和条件下为氮循环和氨(NH3)生产提供了一种替代方法。本文采用溶剂热法和光还原法合成了负载银的In2O3 (Ag@In2O3-X)。Ag的引入显著改变了In2O3的能带结构,导致带隙略微缩小,导带位置更加负,从而有利于In2O3中还原性电子的生成。此外,载银纳米粒子与In2O3之间的协同作用形成了肖特基势垒,扩大了光吸收范围,促进了电荷分离。在模拟阳光下,Ag@In2O3-5的光催化固氮性能达到35.56 μmol h−1 gcat−1,高于其他复合材料,是纯In2O3的3.58倍。同时,该催化剂具有良好的结构稳定性和循环寿命。密度泛函理论(DFT)计算表明,Ag与N2有较强的相互作用,降低了N2加氢反应的势垒。贵金属和半导体之间的协同效应为光催化N2固定工艺提供了新的见解和挑战。这项工作为光催化固氮纳米材料的设计和合成提供了新的见解和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ag nanoparticles modified hollow tubular In2O3 for enhanced photocatalytic nitrogen reduction to ammonia†

Ag nanoparticles modified hollow tubular In2O3 for enhanced photocatalytic nitrogen reduction to ammonia†

The photocatalytic nitrogen reduction reaction provides an alternative process for nitrogen cycling and ammonia (NH3) production under mild conditions. Herein, we have synthesized Ag-loaded In2O3 (Ag@In2O3-X) by solvothermal and photoreduction methods. The introduction of Ag significantly alters the band structure of In2O3, resulting in a slight reduction in the band gap and a more negative conduction band position, thereby facilitating the generation of reductive electrons in In2O3. Moreover, the synergistic interaction between loaded Ag nanoparticles and In2O3 forms a Schottky barrier, which widens the light absorption range and promotes charge separation. Under simulated sunlight, the photocatalytic nitrogen fixation performance of Ag@In2O3-5 reaches 35.56 μmol h−1 gcat−1, which is higher than other composites and 3.58 times that of pure In2O3. At the same time, the catalyst has good structural stability and cycle life. Density functional theory (DFT) calculations demonstrate that Ag exhibits a stronger interaction with N2 and lowers the potential barrier of the N2 hydrogenation reaction. The synergistic effect between precious metals and semiconductors offers novel insights and presents challenges for the photocatalytic N2 fixation process. This work provides new insights and challenges for designing and synthesizing nanomaterials for photocatalytic nitrogen fixation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信